生物与土壤

基于电磁感应数据的膜下滴灌土壤水分动态变化研究

展开
  • 1.塔里木大学植物科学学院,新疆 阿拉尔 843300
    2.浙江大学环境与资源学院,浙江 杭州 310058
王佳文(1996-),男,在读硕士研究生,研究方向为农田土壤属性的近地传感与三维可视化. E-mail: wjwzky@126.com

收稿日期: 2019-08-14

  修回日期: 2019-10-10

  网络出版日期: 2021-03-09

基金资助

国家重点研发计划项目(2018YFE0107000);国家自然基金(41361048)

Dynamic variation of soil moisture in field with drip irrigation under film using electromagnetic induction data

Expand
  • 1. College of Plant Science, Tarim University, Alar 843300, Xinjiang, China
    2. School of Environment and Resources, Zhejiang University, Zhejiang 310058, Hangzhou, China

Received date: 2019-08-14

  Revised date: 2019-10-10

  Online published: 2021-03-09

摘要

快速、无损监测农田土壤水分含量,是智慧农业的重要研究内容。以新疆南疆阿拉尔国家农业科技园区膜下滴灌棉田为研究对象,运用EM38-MK2大地电导率仪快速、高效的获取了4组不同时期的棉田土壤表观电导率数据,并同步采集表层土壤(0~20 cm)样品,通过构建表观电导率数据与室内测定含水量数据间的反演模型获取了测点的含水量数据,并按照土壤水分干旱分级标准对研究区土壤水分进行划分,综合利用GIS软件和地统计方法对土壤水分的时空变异性进行研究。结果表明:4个时期的土壤水分反演模型决定系数均大于0.80且均方根误差(RMSE)和平均绝对百分误差(MAPE)均较小,表明反演模型精度较高,土壤表观电导率与表层土壤水分相关性较好;不同时期土壤含水量数据表明土壤水分具有很强的时间变异性,变异性由中等变异转变为弱变异再转变为中等变异;受人为灌溉等因素的影响,变异函数模型也存在差异;半方差分析中4个时期的土壤水分块金值与基台值之比均大于75%,表明土壤水分在空间上趋近于弱空间相关;高程反距离权重(IDW)插值图及水分克里格插值图表明微地形是影响土壤水分分布的重要因素。本研究可为干旱区膜下滴灌棉田土壤水分动态监测提供重要的方法支撑,从而更好地指导农业灌溉。

本文引用格式

王佳文,彭杰,刘新路,吴家林,齐威,王楠,柳维扬 . 基于电磁感应数据的膜下滴灌土壤水分动态变化研究[J]. 干旱区地理, 2021 , 44(1) : 250 -257 . DOI: 10.12118/j.issn.1000–6060.2021.01.26

Abstract

Rapid and non-destructive monitoring of soil moisture content in farmland are essential contents of accurate irrigation. Traditional soil water measurement methods are applicable to small scale and difficult to obtain spatial continuous soil moisture information. Soil moisture is affected by microtopography and soil texture. It has strong spatial variability characteristics. Electromagnetic induction technology has been widely used in soil properties investigation owing to its advantages of rapid, efficient, and non-destructive. In this study, the cotton fields under mulched drip irrigation in Alar National Agricultural Science and Technology Park in southern Xinjiang are considered. EM38-MK2 is used to obtain soil apparent electrical conductivity data of four groups of cotton fields at different stages rapidly and effectively. Surface soil samples (0-20 cm) are collected simultaneously. The observation points’ water content is obtained by constructing an inversion model between the soil apparent electrical conductivity data and the indoor measured water content data. Then, the study area’s soil moisture is divided into the soil moisture and drought classification criteria. Finally, the soil moisture’s spatiotemporal variability is investigated using GIS software and geostatistical methods synthetically. The results show that the determination coefficients of the soil moisture inversion model in four different periods are greater than 0.80, and root mean square error (RMSE) and mean absolute percentage error (MAPE) are small, indicating that the inversion model has high precision and the correlation between soil apparent electrical conductivity and surface soil moisture is good. The data of soil moisture content in different periods show that moisture has strong time variability, which changes from medium variability to weak variability and then to medium variability. Moreover, the variation function model is different owing to the influence of artificial irrigation factors. In the semi-variance analysis, the ratios of Nugget and Sill of soil moisture in four different periods are more than 75%, indicating that soil moisture tends to be a weak spatial correlation. The maps of elevation inverse distance weight (IDW) interpolation and moisture Kriging interpolation show that microtopography is an essential factor affecting soil moisture distribution. This study can provide an important method of support for the dynamic monitoring of soil moisture in cotton fields under mulched drip irrigation in arid areas to better guide agricultural irrigation.

参考文献

[1] 周倩倩, 丁建丽, 杨爱霞, 等. 基于实测高光谱和电磁感应的绿洲土壤含水量估测[J]. 干旱区资源与环境, 2018,32(3):152-157.
[1] [ Zhou Qianqian, Ding Jianli, Yang Aixia, et al. Estimation of soil moisture spatial distribution based on measured spectral and electromagnetic induction instruments in the arid oasis[J]. Journal of Arid Land Resources and Environment, 2018,32(3):152-157. ]
[2] Abdelraheem A, Esmaeili N, O’Connell M, et al. Progress and perspective on drought and salt stress tolerance in cotton[J]. Industrial Crops and Products, 2019,130:118-129.
[3] 赵波, 王振华, 李文昊. 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响[J]. 农业工程学报, 2016,32(6):139-148.
[3] [ Zhao Bo, Wang Zhenhua, Li Wenhao. Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):139-148. ]
[4] 蒋志云, 李小雁, 张志华, 等. 基于EM38电导率仪土壤水分探测研究[J]. 干旱区研究, 2015,32(1):48-55.
[4] [ Jiang Zhiyun, Li Xiaoyan, Zhang Zhihua, et al. EM38 for soil moisture content estimation in the farming-pastoral ecotone in Inner Mongolia[J]. Arid Zone Research, 2015,32(1):48-55. ]
[5] Hossain M B, Lamb D W, Lockwood P V, et al. EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils[J]. Computers and Electronics in Agriculture, 2010,74(1):100-109.
[6] Reedy R C, Scanlon B R. Soil water content monitoring using electromagnetic induction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003,129(11):1028-1039.
[7] Padhii J, Misra R K. Sensitivity of EM38 in determining soil water distribution in an irrigated wheat field[J]. Soil and Tillage Research, 2011,117:93-102.
[8] Sherlock M D, Mcdonnell J J. A new tool for hillslope hydrologists: Spatially distributed groundwater level and soil water content measured using electromagnetic induction[J]. Hydrological Processes, 2003,17(10):1965-1977.
[9] 张为政, 殷丽娟. 电磁感应电导仪(EM38)测定土壤含盐量的研究[J]. 应用生态学报, 1993,4(3):289-294.
[9] [ Zhang Weizheng, Yin Lijuan. Determination of soil salt content with electromagnetic induction conductometer (EM38)[J]. Chinese Journal of Applied Ecology, 1993,4(3):289-294. ]
[10] 李晓明, 杨劲松, 刘梅先, 等. 基于电磁感应的典型干旱区土壤盐分空间异质性[J]. 农业工程学报, 2010,26(12):97-101.
[10] [ Li Xiaoming, Yang Jingsong, Liu Meixian, et al. Spatial heterogeneity of soil salinity in typical arid area based on electromagnetic induction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(12):97-101. ]
[11] 李洪义, 史舟, 程街亮, 等. 基于EM38的土壤剖面电导率预测研究[J]. 中国农业科学, 2008,41(1):295-302.
[11] [ Li Hongyi, Shi Zhou, Cheng Jieliang, et al. Inversion of soil conductivity profiles based on EM38 apparent electrical conductivity[J]. Scientia Agriculture Sinica, 2008,41(1):295-302. ]
[12] Peng J, Biswasc A, Jiang Q S, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China[J]. Geoderma, 2019,337:1309-1319.
[13] 刘新路, 彭杰, 冯春晖, 等. 基于电磁感应仪数据的南疆棉田土壤电导率反演模型研究[J]. 土壤学报, 2020,57(3):646-655.
[13] [ Liu Xinlu, Peng Jie, Feng Chunhui, et al. Inversion model for soil conductivity in cotton field in south Xinjiang based on EM38-MK2 data[J]. Acta Pedologica Sinica, 2020,57(3):646-655. ]
[14] 赵亚楠, 周玉蓉, 王红梅. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报, 2018,29(11):3577-3586.
[14] [ Zhao Yanan, Zhou Yurong, Wang Hongmei. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinski) in desert grassland of the eastern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2018,29(11):3577-3586. ]
[15] 杨晓潇, 王秀兰, 王计平, 等. 天津市滨海新区土壤水盐空间变异分析[J]. 中国水土保持科学, 2019,17(3):39-47.
[15] [ Yang Xiaoxiao, Wang Xiulan, Wang Jiping, et al. Spatial variation analysis of soil moisture and salinity in Tianjin Binhai New Area[J]. Science of Soil and Water Conservation, 2019,17(3):39-47. ]
[16] 左小安, 赵哈林, 张铜会, 等. 科尔沁不同类型沙地土壤水分在降水后的空间变异特征[J]. 干旱区地理, 2006,29(2):275-281.
[16] [ Zuo Xiaoan, Zhao Halin, Zhang Tonghui, et al. Spatial variability of soil moisture after rainfall in different type sands of Horqin Sand[J]. Arid Land Geography, 2006,29(2):275-281. ]
[17] 吕真真, 杨劲松, 刘广明. 基于EM38-MK2的滨海土壤电导率精确解译模型[J]. 排灌机械工程学报, 2014,32(10):894-900.
[17] [ Lü Zhenzhen, Yang Jinsong, Liu Guangming. Accurate models of interpreting soil electrical conductivity based on EM38-MK2[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014,32(10):894-900. ]
[18] 孙运朋, 陈小兵, 张振华, 等. 滨海棉田土壤盐分时空分布特征研究[J]. 土壤学报, 2013,50(5):891-899.
[18] [ Sun Yunpeng, Chen Xiaobing, Zhang Zhenhua, et al. Temporal-spatial distribution of soil salt in coastal cotton field soil[J]. Acta Pedologica Sinica, 2013,50(5):891-899. ]
[19] 姚荣江, 杨劲松, 姜龙. 电磁感应仪用于土壤盐分空间变异及其剖面分布特征研究[J]. 浙江大学学报(农业与生命科学版), 2007,33(2):207-216.
[19] [ Yao Rongjiang, Yang Jingsong, Jiang Long. Study on spatial variability and profile distribution characteristics of soil salinity by Kriging with an electromagnetic induction[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2007,33(2):207-216. ]
[20] 宋帅杰. 抗蒸腾剂和保水剂对雷竹林抗高温干旱生理的影响[D]. 杭州: 浙江农林大学, 2015.
[20] [ Song Shuaijie. Physiological effects of antitranspirant and super absorbent polymer on heat and drought resistance of Phyllostachys violascens forest[D]. Hangzhou: Zhejiang A & F University, 2015. ]
[21] 司梦可, 曹建生, 阳辉. 微地形变化对地表水文过程影响的研究进展[J]. 中国生态农业学报(中英文), 2019,27(10):1587-1595.
[21] [ Si Mengke, Cao Jiansheng, Yang Hui. Advances in research on the effects of micro-topography changes on surface hydrological processes[J]. Chinese Journal of Eco-Agriculture, 2019,27(10):1587-1595. ]
文章导航

/