收稿日期: 2019-12-04
修回日期: 2020-08-19
网络出版日期: 2021-03-09
基金资助
国家自然科学基金项目(41807437);安徽省自然科学基金项目(1808085QD99);安徽省自然科学基金项目(KJ2017A371)
Hallstatt cycle of solar inertial motion and solar activity based on ensemble empirical mode decomposition
Received date: 2019-12-04
Revised date: 2020-08-19
Online published: 2021-03-09
基于行星会合指数运动学方程,推演出太阳质心到太阳系质心距离变化的计算公式,并利用该公式重建太阳质心相对于太阳系质心的距离变化时间序列,作为太阳轨道运动的替代性指标,使用聚合经验模态分解(Ensemble empirical mode decomposition,EEMD)方法分析0~25.0 ka BP太阳质心到太阳系质心的距离与Δ14C时间序列。结果显示:两者均存在蕴含~2300 a 周期(Hallstatt cycle)的IMF分量;互相关分析证实两者蕴含的Hallstatt周期分量间具有相关性,0~13.9 ka BP与13.9~25.0 ka BP年代相关系数分别可达0.52、0.44,并且太阳质心到太阳系质心距离的变化超前于太阳活动指标Δ14C的变化。表明太阳质心远离太阳系质心时,大气14C含量增加,对应于太阳活动较弱的时期;太阳质心靠近太阳系质心时,大气14C含量减小,对应于太阳活动较强的时期。这一认识对于进一步探究太阳活动Hallstatt周期的成因机制提供了新的依据和思路。
关键词: 太阳系质心; 太阳活动; Hallstatt周期; 聚合经验模态分解(EEMD)
王琳琳,王建,孙威,王婕 . 基于EEMD的太阳绕太阳系质心运动和太阳活动Hallstatt周期分析[J]. 干旱区地理, 2021 , 44(1) : 221 -228 . DOI: 10.12118/j.issn.1000–6060.2021.01.23
Solar activity, evidenced by 14C proxies, shows a period of ~2300 years (Hallstatt cycle). Its physical origin remains uncertain. Recent studies suggested that ~2300-year Hallstatt oscillations of solar activity may be caused by the solar inertial motion (the Sun motion around the center of mass of the solar system). In this study, a formula for calculating the distance between the solar centroid and the solar system’s centroid is deduced based on the kinematic equation of the planet juncture index. In the appropriate proxy of solar inertial motion, the time series of distance change is reconstructed using this formula. Ensemble empirical mode decomposition (EEMD) is a method with which any complicated signal can be decomposed into several intrinsic mode functions (IMFs). This decomposition method is adaptive and highly efficient. It applies to nonlinear and non-stationary processes since the decomposition is based on the local characteristic time scale of the data. To compare the radiocarbon series of INTCAL13 data with the variations of the distance between the solar centroid and the solar system’s centroid from 0 to 25.0 ka BP, we employ the empirical mode decomposition method. The analysis results are as follows: (1) Various components have been identified by decomposing the distance signal, including a significant component with a period of ~2300 years. (2) Following the analysis of the time series of distance change, there is also a component with ~2300-year Hallstatt cycle in the data on the production rate of radiocarbon. The traditional method of Δ14C record preprocessing, applying a pre-selected detrending function, amounts to injecting external information into data. Different from the traditional method the true and more physical meaningful component with the Hallstatt cycle is decomposed by the adaptive EEMD method. (3) Next, the ~2300-year variations of the two series considered are compared. The last 13900 years data in INTCAL13 record derive mostly from tree-ring chronologies, while the older data is made using mostly marine records. Thus, cross-correlation analysis is applied to the above two time-frames of the components with the Hallstatt cycle decomposed from the time series of the distance and Δ 14C. The cross-correlation coefficient is 0.52 from 0 to 13.9 ka BP, and 0.44 from 13.9 to 25.0 ka BP. The values confirm the assumption that the variations of the distance between the solar centroid and the solar system’s centroid and the production rate of radiocarbon are related. As discussed above, the study of the relationship between solar inertial motion and solar activity covers the Holocene and extends to 25.0 ka BP. (4) It appears that solar inertial motion is the cause of the Hallstatt cycle found in solar activity proxy. The14C concentration of the atmosphere increases when the solar centroid moves away from the solar system’s centroid, which corresponds to the period of weak solar activity. When the solar centroid is near the solar system’s centroid, the14C concentration decreases which corresponds to the period of strong solar activity.
[1] | 尹志强, 马利华, 韩延本, 等. 太阳活动的甚长周期性变化[J]. 科学通报, 2007,52(16):1859-1863. |
[1] | [ Yin Zhiqiang, Ma Lihua, Han Yanben, et al. Long periodic variation of solar activity[J]. Chinese Science Bulletin, 2007,52(16):1859-1863. ] |
[2] | Eddy J A. The maunder minimum[J]. Science, 1976,192(4245):1189-1202. |
[3] | Friis-Christensen E, Lassen K. Length of the solar cycle: An indicator of solar activity closely associated with climate[J]. Science, 1991,254(5032):698-700. |
[4] | Stuiver M, Quay P D. Changes in atmospheric carbon-14 attributed to a variable Sun[J]. Science, 1980,207(4426):11-19. |
[5] | 范章云, 戴开美. 大气中14C浓度的变化[J]. 物理学进展, 1984(4):3-25. |
[5] | [ Fan Zhangyun, Dai Kaimei. Variations of 14C concentration of the atmosphere[J]. Progress in Physics, 1984(4):3-25. ] |
[6] | Suess H E. The radiocarbon record in tree rings of the last 8000 years[J]. Radiocarbon, 1980,22(2):200-209. |
[7] | Damon P E, Sonett C P. Solar and terrestrial components of the atmospheric 14C variation spectrum[C]//Sonett C P, Glampapa M S, Matthews M S. The Sun in Time. Arizona: The University of Arizona Press, 1991: 360-388. |
[8] | Vasiliev S S, Dergachev V A. The 2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 14C data over the last 8000 years [J]. Annales Geophysicae, 2002,20(1):115-120. |
[9] | Solanki S K, Usoskin I G, Kromer B, et al. Unusual activity of the Sun during recent decades compared to the previous 11000 years[J]. Nature, 2004,431(7012):1084-1087. |
[10] | 周德帅. 太阳Hale周期长度的预测反演及其在气候变化研究中的应用[D]. 南京: 南京师范大学, 2016. |
[10] | [ Zhou Deshuai. Prediction of the length of Hale cycle and its application in the study of climate change[D]. Nanjing: Nanjing Normal University, 2016. ] |
[11] | Parker E N. Hydromagnetic dynamo models[J]. Astrophysical Journal, 1955,122(2):293. |
[12] | Beer J, Tobias S M, Weiss N O. On long-term modulation of the Sun’s magnetic cycle[J]. Monthly Notices of the Royal Astronomical Society, 2017,473(2):1596-1602. |
[13] | Hung C C. Apparent relations between solar activity and solar tides caused by the planets[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20070025111, 2007-07/2020-06-02. |
[14] | Hantzsche E. On the tidal theory of solar activity[J]. Astronomische Nachrichten, 1978,299(5):259-267. |
[15] | Jose P D. Sun’s motion and sunspots[J]. Astronomical Journal, 1965,70(3):193. |
[16] | Charvatova I. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion[J]. Annales Geophysicae, 2000,18(4):399-405. |
[17] | 刘复刚, 郑一, 王建, 等. 太阳轨道运动的2400年周期与轨道周期[J]. 空间科学学报, 2015,35(4):381-392. |
[17] | [ Liu Fugang, Zheng Yi, Wang Jian, et al. 2400 years and track cycles of the Sun’s orbital motion[J]. Chinese Journal of Space Science, 2015,35(4):381-392. ] |
[18] | Scafetta N, Milani F, BianchiniI A, et al. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene[J]. Earth Science Reviews, 2016,162:24-43. |
[19] | 刘复刚, 姚允龙, 鲍锟山, 等. 准双世纪和Hallstatt气候变化周期对太阳轨道运动调控太阳活动的响应[J]. 第四纪研究, 2018,38(6):1507-1517. |
[19] | [ Liu Fugang, Yao Yunlong, Bao Kunshan, et al. Response of quasi bi-centurial and Hallstatt climate change periodic to the solar activity controlled by solar orbital motion[J]. Quaternary Sciences, 2018,38(6):1507-1517. ] |
[20] | Reamer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013,55(4):1869-1887. |
[21] | 刘复刚, 王建. 行星会合指数变化与太阳绕太阳系质心运转的周期[J]. 地球物理学报, 2013,56(5):1457-1466. |
[21] | [ Liu Fugang, Wang Jian. Changes of the planet juncture index and solar revolution cycle around the mass center of the solar system[J]. Chinese Journal of Geophysics, 2013,56(5):1457-1466. ] |
[22] | Souami D, Souchay J. The solar system’s invariable plane[J]. Astronomy and Astrophysics, 2012,543:A133. |
[23] | 戴文赛. 太阳系演化学[M]. 上海: 上海科学技术出版社, 1979: 22-23. |
[23] | [ Dai Wensai. The evolution of the solar system[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1979: 22-23. ] |
[24] | 孙威, 王建, 陈金如, 等. 近两千年以来行星会合指数与行星系日心经度变化及频谱分析[J]. 科学通报, 2017,62(5):407-419. |
[24] | [ Sun Wei, Wang Jian, Chen Jinru, et al. Variations of the planet juncture index and heliocentric longitude with spectral analysis for approximately 2000 years[J]. Science China Press, 2017,62(5):407-419. ] |
[25] | 孙威, 王建, 陈金如, 等. 行星会合指数与行星系质心的日心经度模型构建及数值模拟[J]. 地球物理学进展, 2017,32(2):506-515. |
[25] | [ Sun Wei, Wang Jian, Chen Jinru, et al. Modeling of the planet juncture index and heliocentric longitude of the centroid of planetary systems and numerical simulation[J]. Progress in Geophysics, 2017,32(2):506-515. ] |
[26] | USGS. The Sun and climate[EB/OL]. http://greenwood.cr.usgs.gov/pub/fact-sheets/fs-0095-00/, 2000-08/2020-06-02. |
[27] | Adophi F, Muscheler R, Friedrich M, et al. Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies[J]. Quaternary Science Reviews, 2017,170:98-108. |
[28] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London A, 1998,454(1971):903-995. |
[29] | 庄哲. 基于振动数据驱动的受电弓裂纹故障诊断研究[D]. 成都: 西南交通大学, 2018. |
[29] | [ Zhuang Zhe. Research on vibration data-driven for pantograph crack fault diagnosis[D]. Chengdu: Southwest Jiaotong University, 2018. ] |
[30] | Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41. |
[31] | 唐洁. 基于EEMD的陕西降水量与太阳黑子活动关系分析[J]. 干旱区资源与环境, 2017,31(4):154-159. |
[31] | [ Tang Jie. Relation between rainfall of Shaanxi Province and activities of sunspot based on ensemble empirical mode decomposition[J]. Journal of Arid Land Resources and Environment, 2017,31(4):154-159. ] |
[32] | 李玉霞, 陈玲玲, 江亭桂, 等. 基于EEMD的太阳活动对印度夏季风的多尺度胁迫分析[J]. 地理科学, 2018,38(4):628-635. |
[32] | [ Li Yuxia, Chen Lingling, Jiang Tinggui, et al. Multi-scale modulation analysis of solar activity and Indian summer monsoon based on EEMD method[J]. Scientia Geographica Sinica, 2018,38(4):628-635. ] |
[33] | Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates[J]. Science, 1997,278(5341):1257-1266. |
[34] | Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004,62(3):243-255. |
[35] | 唐进年, 丁峰, 张进虎, 等. 库姆塔格沙漠东南缘BL剖面粒度记录的全新世快速气候事件[J]. 干旱区地理, 2017,40(6):1171-1178. |
[35] | [ Tang Jinnian, Ding Feng, Zhang Jinhu, et al. BL section recording process of rapid climate change event of Holocene at southeastern edge of the Kumtagh Desert[J]. Arid Land Geography, 2017,40(6):1171-1178. ] |
[36] | 曹志宏, 安成邦, 尹丽颖, 等. 腾格里沙漠昂格尔图湖记录的988 AD以来的古气候变化[J]. 干旱区地理, 2018,41(6):1251-1259. |
[36] | [ Cao Zhihong, An Chengbang, Yin Liying, et al. Climate change derived from Anggeertu Lake in the Tengger Desert since 988 AD[J]. Arid Land Geography, 2018,41(6):1251-1259. ] |
[37] | 杜丁丁, Mughal M S, Blaise D, 等. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019,42(3):551-558. |
[37] | [ Du Dingding, Mughal M S, Blaise D, et al. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since Last Glacial Maximum from Selin Co Lake sediments, central Qinghai-Tibetan Plateau[J]. Arid Land Geography, 2019,42(3):551-558. ] |
[38] | Ermakov V I, Okhlopkov V P, Stozhkov Y I. The impact of cosmic dust on the Earth’s climate[J]. Moscow University Physics Bulletin, 2009,64(2):214-217. |
[39] | Ollila A. Cosmic theories and greenhouse gases as explanations of global warming[J]. Journal of Earth Sciences and Geotechnical Engineering, 2015,5(4):27-43. |
[40] | 刘复刚, 王建, 商志远, 等. 太阳轨道运动长周期性韵律的成因[J]. 地球物理学进展, 2013,28(2):570-578. |
[40] | [ Liu Fugang, Wang Jian, Shang Zhiyuan, et al. Study on long-term cyclical rhythm of solar activity[J]. Progress in Geophysics, 2013,28(2):570-578. ] |
/
〈 | 〉 |