地表过程研究

冰川下垫面对夏季云结构和云水含量的影响——以祁连山区疏勒南山为例

展开
  • 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.中国科学院西北生态环境资源研究所,甘肃 兰州 730070
孙美平(1982-),女,博士,副教授,主要从事寒区旱区气候变化及水文过程方面研究. E-mail: sunmeiping1982@163.com

收稿日期: 2020-02-24

  修回日期: 2020-06-19

  网络出版日期: 2021-03-09

基金资助

国家自然科学基金项目(41801052);西北师范大学研究生科研资助项目(2019KYZZ012059);中国博士后科学基金(146221)

Effects of glacial surface on cloud structure and cloud water content in summer: A case study of the Shulenan Mountain of Qilian Mountains

Expand
  • 1. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, Gansu, China

Received date: 2020-02-24

  Revised date: 2020-06-19

  Online published: 2021-03-09

摘要

云水含量和云结构参量是天气预报、高山区水循环过程分析的基础。基于2012—2015年夏季CloudSat卫星遥感资料的2B-CLDCLASS、2B-GEOPROF和2B-GEOPROF-LIDAR,结合中国第二次冰川编目数据及气象资料,对祁连山地区疏勒南山冰川区与非冰川区云水含量和云类型特征进行分析。结果表明:(1) 云水含量的垂直分布受下垫面和云类型的影响,主要表现为有冰川覆盖的高山上空降水云类型以深对流云为主,无冰川覆盖的高山上空降水云类型以雨层云为主。(2) 疏勒南山地区高含水量主要分布在5 km以下的中低层云中,且冰川区气流垂直运动较非冰川区活跃。(3) 疏勒南山冰川区云水含量平均值为0.07 g·m-3,非冰川区云水含量平均值为0.17 g·m-3,云水的空间变化在一定程度上能够反映降水和水汽的分布状况。

本文引用格式

孙美平,史继花,姚晓军,张海瑜,赵琳林,马维谦 . 冰川下垫面对夏季云结构和云水含量的影响——以祁连山区疏勒南山为例[J]. 干旱区地理, 2021 , 44(1) : 141 -148 . DOI: 10.12118/j.issn.1000–6060.2021.01.15

Abstract

As a distinct underlying surface, glaciers directly affect water vapor flux, cloud, precipitation, and atmospheric circulation. Shulenan Mountain is rich in cloud water resources and is home to the glacier development center of the Qilian Mountains. It is of great significance for regional climate change, water resource development, and utilization for study of the interaction of glaciers, clouds, and precipitation at Shulenan Mountain. On the basis of the 2B-CLDCLASS, 2B-GEOPROF, and 2B-GEOPROF-LIDAR product data of the CloudSat remote sensing satellite during the summers of 2012-2015, the second Chinese glacier inventory, and meteorological data, this paper first analyzed the current situation of the glaciers on Shulenan Mountain. Then, it studied the cloud water content and cloud structure in the summer at Shulenan Mountain, including the spatial distribution of cloud water content, cloud types, and height structure. Finally, the influence of the glacial surface of Shulenan Mountain on the cloud water content in summer was analyzed. The results showed the following: (1) The cloud water content at Shulenan Mountain could develop in the stratosphere in summer, and the vertical distribution of the cloud water content was affected by the glacial surface and cloud type, which mainly showed that the type of precipitation clouds over glacial-covered high mountains was largely deep convective clouds and that on the mountain without glacier cover was mainly nimbostratus. (2) The high water content in the Shulenan Mountain area was mainly distributed in the middle- and lower-layer clouds below 5 km, and the vertical movement of the airflow in the glacial area was more active than that in the non-glacial area. The development potential of the cloud water resources showed a decreasing trend from west to east, indicating that the change of cloud water can, to some extent, reflect the spatial distribution of the precipitation and water vapor. (3) The average cloud water content in the glacial area of Shulenan Mountain was 0.07 g·m-3, and that in the non-glacial area was 0.17 g·m-3. This showed that when the water vapor passed over the glacial area, the saturated water vapor pressure of the overhead water vapor decreased because of the cold storage of the glacial surface and water vapor was more likely to condense and cause rain, reflecting that the glacier has a certain traction effect on water vapor transportation.

参考文献

[1] Stephens G L. Cloud feedbacks in the climate system: A critical review[J]. Joumal of Climate, 2005,18(2):237-27, doi: 10.1175/JCLI-3243.1
[2] Bony S, Stevens B, Frierson D M W, et al. Clouds, circulation and climate sensitivity[J]. Nature Geoscience, 2015,8(4):261-268, doi: 10.1038/ngeo2398
[3] Norris J R, Allen R J, Evan A T, et al. Evidence for climate change in the satellite cloud record[J]. Nature, 2016,536(7614):72-75, doi: 10.1038/nature18273
[4] 丁晓东, 黄建平, 李积明, 等. 基于主动卫星遥感研究西北地区云层垂直结构特征及其对人工增雨的影响[J]. 干旱气象, 2012,30(4):529-538.
[4] [ Ding Xiaodong, Huang Jianping, Li Jiming, et al. Study on cloud vertical structure feature over northwest China based on active satellite remote sensing and its influence on precipitation enhancement[J]. Arid Meteorology, 2012,30(4):529-538. ]
[5] 洪延超, 周非非. 层状云系人工增雨潜力评估研究[J]. 大气科学, 2006,30(5):913-926.
[5] [ Hong Yanchao, Zhou Feifei. The study of evaluation of potential of artificial precipitation enhancement in stratiform cloud system[J]. Chinese Journal of Atmospheric Sciences, 2006,30(5):913-926. ]
[6] 王研峰, 王蓉, 王聚杰, 等. 西北干旱半干旱区一次层状云系微物理特征分析[J]. 干旱区地理, 2019,42(6):1291-1300.
[6] [ Wang Yanfeng, Wang Rong, Wang Jujie, et al. Cloud microphysical characteristics on a stratiform nephsystem in the arid and semi-arid regions of northwest China[J]. Arid Land Geography, 2019,42(6):1291-1300. ]
[7] 张杰, 张强, 田文寿, 等. 祁连山区云光学特征的遥感反演与云水资源的分布特征分析[J]. 冰川冻土, 2006,28(5):722-727.
[7] [ Zhang Jie, Zhang Qiang, Tian Wenshou, et al. Remote sensing retrieval and analysis of optical character of cloud in Qilian Mountains[J]. Journal of Glaciology and Geocyology, 2006,28(5):722-727. ]
[8] 陈勇航, 黄建平, 陈长和, 等. 西北地区空中云水资源的时空分布特征[J]. 高原气象, 2005,24(6):905-912.
[8] [ Chen Yonghang, Huang Jianping, Chen Changhe, et al. Temporal and spatial distributions of cloud water resources over northwestern China[J]. Plateau Meteorology, 2005,24(6):905-912. ]
[9] 郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011,26(10):1057-1070.
[9] [ Zheng Guoguang, Chen Yue, Chen Tianyu, et al. The observational study of summer orographic clouds structures of Qilian Mountains[J]. Advances in Earth Science, 2011,26(10):1057-1070. ]
[10] 吴伟, 王式功. 中国北方云量变化趋势及其与区域气候的关系[J]. 高原气象, 2011,30(3):651-658.
[10] [ Wu Wei, Wang Shigong. Tendency change of cloud cover over northern China and its relation with regional climate[J]. Plateau Meteorology, 2011,30(3):651-658. ]
[11] 巩宁刚, 孙美平, 闫露霞, 等. 1979—2016年祁连山地区大气水汽含量时空特征及其与降水的关系[J]. 干旱区地理, 2017,40(4):762-771.
[11] [ Gong Ninggang, Sun Meiping, Yan Luxia, et al. Temporal and spatial characteristics of atmospheric water vapor and its relationship with precipitation in Qilian Mountains during 1979—2016[J]. Arid Land Geography, 2017,40(4):762-771. ]
[12] 王宝鉴, 黄玉霞, 王劲松, 等. 祁连山云和空中水汽资源的季节分布与演变[J]. 地球科学进展, 2006,21(9):948-955.
[12] [ Wang Baojian, Huang Yuxia, Wang Jinsong, et al. The seasonal distribution and time-varying of the cloud and vapor flux in Qilian Mountain areas[J]. Advances in Earth Science, 2006,21(9):948-955. ]
[13] 马兴刚, 贾文雄, 丁丹, 等. 祁连山东部大气降水δ17O变化特征及水汽输送 [J]. 干旱区地理, 2019,42(3):517-525.
[13] [ Ma Xinggang, Jia Wenxiong, Ding Dan, et al. Variation characteristics of δ 17O in precipitation and moisture transports in eastern Qilian Mountains [J]. Arid Land Geography, 2019,42(3):517-525. ]
[14] 陈少勇, 董安祥, 韩通. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 2007,30(5):715-719.
[14] [ Chen Shaoyong, Dong Anxiang, Han Tong. Differences in summer precipitation between the east and west of the Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology, 2007,30(5):715-719. ]
[15] 宋琦明, 张武, 苏亚乔, 等. 基于卫星遥感的祁连山及甘肃中部地区云宏观特征[J]. 干旱区研究, 2019,36(3):712-722.
[15] [ Song Qiming, Zhang Wu, Su Yaqiao, et al. Cloud macro-features over the Qilian Mountains and central Gansu based on satellite remote sensing[J]. Arid Land Geography, 2019,36(3):712-722. ]
[16] 杨大生, 王普才. 中国地区夏季6—8月云水含量的垂直分布特征[J]. 大气科学, 2012,36(1):89-101.
[16] [ Yang Dasheng, Wang Pucai. Characteristics of vertical distributions of cloud water contents over China during summer[J]. Chinese Journal of Atmospheric Sciences, 2012,36(1):89-101. ]
[17] 张晓, 段克勤, 石培宏. 基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构[J]. 大气科学, 2015,39(6):1073-1080.
[17] [ Zhang Xiao, Duan Keqin, Shi Peihong. Cloud vertical profiles from CloudSat data over the eastern Tibetan Plateau during summer[J]. Chinese Journal of Atmospheric Sciences, 2015,39(6):1073-1080. ]
[18] 李积明, 黄建平, 衣育红, 等. 利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J]. 大气科学, 2009,33(4):698-707.
[18] [ Li Jiming, Huang Jianping, Yi Yuhong, et al. Analysis of vertical distribution of cloud in East Asia by space-based lidar data[J]. Chinese Journal of Atmospheric Sciences, 2009,33(4):698-707. ]
[19] 王智敏, 冯婉悦, 李圆圆, 等. 基于CloudSat资料分析北疆强降雪天气的云结构特征[J]. 干旱区地理, 2019,42(2):244-251.
[19] [ Wang Zhimin, Feng Wanyue, Li Yuanuan, et al. Cloud structure characteristics in heavy snowfall days in northern Xinjiang using Cloudsat satellite data[J]. Arid Land Geography, 2019,42(2):244-251. ]
[20] 沈永平, 梁红. 高山冰川区大降水带的成因探讨[J]. 冰川冻土, 2004,26(6):806-809.
[20] [ Shen Yongping, Liang Hong. High precipitation in glacial region of high mountains in high Asia: Possible cause[J]. Journal of Glaciology and Geocyology, 2004,26(6):806-809. ]
[21] 张东启, 明镜, 魏文寿. 天山乌鲁木齐河源1号冰川致冷效应的小气候观测[J]. 干旱区地理, 2011,34(3):449-457.
[21] [ Zhang Dongqi, Ming Jing, Wei Wenshou. Microclimate measurements related to glacier cooling effect at No.1 glacier, headwater of Urumqi River, Tianshan Mountains[J]. Arid Land Geography, 2011,34(3):449-457. ]
[22] 张晓, 段克勤, 刘焕才. 夏季念青唐古拉峰地区云结构分析[J]. 水科学进展, 2015,26(2):196-200.
[22] [ Zhang Xiao, Duan Keqin, Liu Huancai. Study of the cloud structure over the Mount Nyainqêntanglha during summer[J]. Advances in Water Science, 2015,26(2):196-200. ]
[23] 张勇, 刘时银, 韩海东, 等. 天山南坡科其卡尔巴契冰川消融期气候特征分析[J]. 冰川冻土, 2004,26(5):545-550.
[23] [ Zhang Yong, Liu Shiyin, Han Haidong, et al. Characteristics of climate on the Keqicar Glacier on the south slopes of the Tianshan Mountains during ablation period[J]. Journal of Glaciology and Geocyology, 2004,26(5):545-550. ]
[24] 丁贤荣. 高山增水效应及其水资源意义[J]. 山地学报, 2003,21(6):681-685.
[24] [ Ding Xianrong. Water increasing effect of mountains and its value of water resources[J]. Journal of Mountain Science, 2003,21(6):681-685. ]
[25] 孙美平, 刘时银, 姚晓军, 等. 近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J]. 地理学报, 2015,70(9):1402-1414.
[25] [ Sun Meiping, Liu Shiyin, Yao Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half century: Based on the revised first and second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015,70(9):1402-1414. ]
[26] 张华伟, 鲁安新, 王丽红, 等. 祁连山疏勒南山地区冰川变化的遥感研究[J]. 冰川冻土, 2011,33(1):8-13.
[26] [ Zhang Huawei, Lu Anxin, Wang Lihong, et al. Glacier change in the Shulenan Mountain monitored by remote sensing[J]. Journal of Glaciology and Geocyology, 2011,33(1):8-13. ]
[27] Frank R, Boris T, Christoph R, et al. Cloud detection and analysis on the Tibetan Plateau using Meteosat and Cloudsat[J]. Journal of Geophysical Research: Atmospheres, 2013,118(17):10082-10099, doi: 10.1002/jgrd.50790
[28] Smalley M, L'ecuyer T, Lebsock M, et al. A comparison of precipitation occurrence from the NCEP stage IV QPE product and the cloudsat cloud profiling radar[J]. Journal of Hydrometeorology, 2014,15(1):444-458, doi: 10.1175/JHM-D-13-048.1
[29] 位晶, 段克勤. 基于卫星资料的秦岭南北云系及其垂直结构特征[J]. 高原气象, 2018,37(3):777-785.
[29] [ Wei Jing, Duan Keqin. Analysis of cloud system and its vertical structure between the southern and northern Qinling based on satellite data[J]. Plateau Meteorology, 2018,37(3):777-785. ]
[30] 王炳忠, 刘庚山. 我国大陆大气水汽含量的计算[J]. 地理学报, 1993,48(3):244-253.
[30] [ Wang Bingzhong, Liu Gengshan. An estimation of total atmospheric water vapor in the mainland of China[J]. Acta Geographica Sinica, 1993,48(3):244-253. ]
[31] 潘韬, 吴绍洪, 刘玉洁, 等. 纵向岭谷区地表大气水汽含量的气候学计算[J]. 地理科学进展, 2012,31(3):293-302.
[31] [ Pan Tao, Wu Shaohong, Liu Yujie, et al. Climatological calculation of land surface atmospheric water vapor content in longitudinal range-gorge region[J]. Progress in Geography, 2012,31(3):293-302. ]
[32] 李进, 李栋梁, 张杰. 黄河流域夏季降水有效转化率[J]. 水科学进展, 2012,23(3):346-354.
[32] [ Li Jin, Li Dongliang, Zhang Jie. Research on summer effective precipitation conversion rate over the Yellow River Basin[J]. Advances in Water Science, 2012,23(3):346-354. ]
[33] 卓嘎, 边巴次仁, 杨秀海, 等. 近30年西藏地区大气可降水量的时空变化特征[J]. 高原气象, 2013,32(1):23-30.
[33] [ Zhuo Ga, Bian Baciren, Yang Xiuhai, et al. Spatial and temporal changes of atmospheric precipitable water in Tibet region in recent 30 years[J]. Plateau Meteorology, 2013,32(1):23-30. ]
[34] 张强, 张杰, 孙国武, 等. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 2007,65(4):633-643.
[34] [ Zhang Qiang, Zhang Jie, Sun Guowu, et al, Research on atmospheric water-vapor distribution over Qilianshan Mountains[J]. Journal of Meteorology, 2007,65(4):633-643. ]
[35] 孙旭映, 李耀辉, 邓祖琴. 一次层状云降水过程云中液态水含量的演变特征[J]. 干旱区资源与环境, 2013,27(10):81-86.
[35] [ Sun Xunying, Li Yaohui, Deng Zuqin. The liquid water evolvement in a stratiform cloud-precipitation process[J]. Journal of Arid Land Resources and Environment, 2013,27(10):81-86. ]
文章导航

/