收稿日期: 2019-12-16
修回日期: 2020-06-03
网络出版日期: 2021-03-09
基金资助
国家自然科学基金项目(41701087)
Characteristics of glacier movement in the eastern Pamir Plateau
Received date: 2019-12-16
Revised date: 2020-06-03
Online published: 2021-03-09
冰川运动控制着冰量输送变化,为冰川变化和冰川灾害研究提供重要信息。为了探讨东帕米尔高原冰川运动特征及其影响因素,基于ITS_LIVE和GoLIVE分析了不同规模、不同地形条件、表碛/非表碛区域的冰川运动速度状况。研究结果表明:(1) 东帕米尔高原冰川平均运动速度为5.31 m·a-1,冰川运动速度与冰川规模相关,表现为大冰川比小冰川运动快;(2) 冰川运动速度与平均坡度相关,表现为随平均坡度增加先增后减,坡度过大不利于冰川积累,表现为厚度(规模)小,则速度慢。(3) 西南(8.69 m·a-1)、东南(11.67 m·a-1)坡向的冰川运动速度大于其它坡向的冰川运动速度,与各个坡向的冰川规模相关。(4) 表碛覆盖型冰川的运动速度小于非表碛覆盖型冰川,表碛对冰川运动速度起到抑制作用。(5) 1989—2018年东帕米尔高原冰川运动速度表现稳定,与冰川年际变化稳定相对应。消融期冰川运动速度小于其它季节,与年内冰川厚度变化相关。
黄丹妮,张震,张莎莎,薛乃婷 . 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021 , 44(1) : 131 -140 . DOI: 10.12118/j.issn.1000–6060.2021.01.14
The Pamir Plateau in Central Asia (30°00′-41°00′N; 73°00′-77°30′E) includes parts of Afghanistan, Tajikistan, and China. The Chinese part is known as the eastern Pamir, located in southwestern Xinjiang. The Sino-Pakistan Highway passes through the study area. Glacier meltwater nourishes the people of Kashi Prefecture, Xinjiang, China. Pamir glaciers have recently shown unusual behavior: On average, no significant area and mass changes but frequent advances and surge activities have been observed during the last decades. The characteristics of glacier movement are helpful in understanding the unusual behavior. In our study, glacier movements at a different scale, topography, and morphology were analyzed by the Inter-Mission Time Series of Land Ice Velocity and Elevation and Global Land Ice Velocity Extraction from Landsat 8 data. The results are as follows: (1) The average glacier velocity in the eastern Pamir is 5.31 m·a-1 and is related to glacier scale, which shows that large glaciers move faster than small glaciers. (2) Glacier velocity is related to the average slope, which first increases and then decreases with the increase of the average slope. Excessive slopes are not conducive to glacier accumulation, and because the thickness (scale) is small, velocity is slow. (3) Glacier velocities on southwestern (8.69 m·a-1) and southeastern (11.67 m·a-1) slope directions are greater than those of other slope directions, which is related to the scale of glaciers in each slope direction. (4) Debris-covered glacier velocity is lower than that of debris-free glaciers because debris inhibits movement. (5) Glacier velocities were stable from 1985 to 2018, which is consistent with the stable area and mass trends of the eastern Pamir glaciers. Glacier velocities in melting seasons were lower than those in the pre-melt and post-melt seasons, which is presumably related to annual thickness changes.
[1] | Stocker T F, Qin D, Plattner G K, et al. Observation: Cryosphere[C]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[2] | 牟建新, 李忠勤, 张慧, 等. 中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应——以乌源1号冰川和帕隆94号冰川为例[J]. 干旱区地理, 2019,42(1):20-28. |
[2] | [ Mou Jianxin, Li Zhongqin, Zhang Hui, et al. Mass balance variation of continental glacier and temperate glacier and their response to climate change in western China: Taking Urumqi Glacier No. 1 and Parlung No. 94 Glacier as examples[J]. Arid Land Geography, 2019,42(1):20-28. ] |
[3] | 沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(II): 灾害效应[J]. 冰川冻土, 2013,35(6):1355-1370. |
[3] | [ Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (Ⅱ): Hazards effects[J]. Journal of Glaciology and Geocryology, 2013,35(6):1355-1370. ] |
[4] | 王群, 范景辉, 周伟, 等. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018,30(3):167-173. |
[4] | [ Wang Qun, Fang Jinghui, Zhou Wei, et al. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018,30(3):167-173. ] |
[5] | 李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013,56(4):1226-1236. |
[5] | [ Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR offset-tracking approach to estimate surface motion of the south Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013,56(4):1226-1236. ] |
[6] | 蒋宗立, 刘时银, 龙四春, 等. 基于合成孔径雷达技术及DEM的公格尔山冰川动力特征分析[J]. 冰川冻土, 2014,36(2):286-295. |
[6] | [ Jiang Zongli, Liu Shiyin, Long Sichun, et al. Analysis of the glacier dynamics features in Kongur Mountain based on SAR technology and DEMs[J]. Journal of Glaciology and Geocryology, 2014,36(2):286-295. ] |
[7] | 王思胜, 江利明, 孙永玲, 等. 基于ALOS PALSAR数据的山地冰川流速估算方法比较——以喀喇昆仑地区斯克洋坎力冰川为例[J]. 国土资源遥感, 2016,28(2):54-61. |
[7] | [ Wang Sisheng, Jiang Liming, Sun Yongling, et al. Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images: A case study of Skyang Glacier in central Karakoram[J]. Remote Sensing for Land and Resources, 2016,28(2):54-61. ] |
[8] | Wang P Y, Li Z Q, Zhou P, et al. Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan, China[J]. Cold Regions Science and Technology, 2018,145:177-184. |
[9] | 井哲帆, 刘力, 周在明, 等. 冰川运动速度影响因子的强度分析: 以祁连山七一冰川为例[J]. 冰川冻土, 2011,33(6):1222-1228. |
[9] | [ Jing Zhefan, Liu Li, Zhou Zaiming, et al. Analysis on the influencing factors of glacier flow velocity: A case study of Qiyi Glacier in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011,33(6):1222-1228. ] |
[10] | 王欣, 刘琼欢, 蒋亮虹, 等. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析[J]. 冰川冻土, 2015,37(3):570-579. |
[10] | [ Wang Xin, Liu Qionghuan, Jiang Lianghong, et al. Characteristics and influence factors of glacier surface flow velocity in the Everest region, the Himalayas derived from, ALOS/PALSAR images[J]. Journal of Glaciology and Geocryology, 2015,37(3):570-579. ] |
[11] | 张莎莎, 张震, 刘时银, 等. 喀喇昆仑山西北部冰川运动速度地形控制特征[J]. 冰川冻土, 2019,41(5):1-13. |
[11] | [ Zhang Shasha, Zhang Zhen, Liu Shiyin, et al. Topographic control characteristics of glacier velocity in Hunza River Basin of Karakoram Mountains[J]. Journal of Glaciology and Geocryology, 2019,41(5):1-13. ] |
[12] | Holzer N, Vijay S, Yao T, et al. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data[J]. The Cryosphere, 2015,9(6):1811-1856. |
[13] | Zhang Z, Xu J L, Liu S Y, et al. Glacier changes since the early 1960s, eastern Pamir, China[J]. Journal of Mountain Science, 2016,13(2):276-291. |
[14] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulation in Tibetan Plateau and surrounding[J]. Nature Climate Change, 2012,2(9):663-667. |
[15] | Gardelle J, Berthier E, Arnaud Y, et al. Region wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999—2011[J]. The Cryosphere, 2013,7(6):1263-1286. |
[16] | 段克勤, 姚檀栋, 王宁练, 等. 慕士塔格冰芯降水记录及其对冰川水资源的气候意义[J]. 冰川冻土, 2007,29(5):680-684. |
[16] | [ Duan Keqin, Yao Tandong, Wang Ninglian, et al. Records of precipitation in the Muztag Ata ice core and its climate significance to glacier water resources[J]. Journal of Glaciology and Geocryology, 2007,29(5):680-684. ] |
[17] | Yan S Y, Guo H D, Liu G, et al. Monitoring Muztagh Kuksai Glacier surface velocity with L-band SAR data in southwestern Xinjiang, China[J]. Environmental Earth Sciences, 2013,70:3175-3184. |
[18] | Yang H, Yang S, Liu G, et al. Fluctuations and movements of the Kuksai Glacier, western China, derived from Landsat image sequences[J]. Journal of Applied Remote Sensing, 2013,8(1), 084599, doi: 10.1117/1.JRS.8.084599 |
[19] | Shangguan D H, Liu S Y, Ding Y J, et al. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing[J]. Journal of Glaciology, 2016,62(235):944-953. |
[20] | 张震, 刘时银, 魏俊锋, 等. 新疆帕米尔跃动冰川遥感监测研究[J]. 冰川冻土, 2016,38(1):11-20. |
[20] | [ Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing[J]. Journal of Glaciology and Geocryology, 2016,38(1):11-20. ] |
[21] | 李均力, 陈曦, 包安明, 等. 公格尔九别峰冰川跃动无人机灾害监测与评估[J]. 干旱区地理, 2016,39(2):378-386. |
[21] | [ Li Junli, Chen Xi, Bao Anming, et al. Glacier hazard emergency monitoring of the Jiubie Peak in Kongur Mountains using unmanned aerial vehicle photogrammetry[J]. Arid Land Geography, 2016,39(2):378-386. ] |
[22] | Yao X, Javed I, Li L J, et al. Characteristics of mountain glacier surge hazard: Learning from a surge event in NE Pamir, China[J]. Journal of Mountain Science, 2019,16(7):1515-1533. |
[23] | Lü M Y, Guo H D, Lu X C, et al. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016[J]. The Cryosphere, 2019,13:219-236. |
[24] | 张震, 刘时银, 魏俊锋, 等. 东帕米尔高原昆盖山跃动冰川遥感监测研究[J]. 地理科学进展, 2018,37(11):1545-1554. |
[24] | [ Zhang Zhen, Liu Shiyin, Wei Junfeng, et al. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing[J]. Progress in Geography, 2018,37(11):1545-1554. ] |
[25] | 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015,70(1):3-16. |
[25] | [ Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015,70(1):3-16. ] |
[26] | Gardner A S, Fahnestock M A, Scambos T A. Update to time of data download: ITS_LIVE regional glacier and ice sheet surface velocities[J]. Data archived at National Snow and Ice Data Center, 2019, doi: 10.5067/6II6VW8LLWJ7 |
[27] | Gardner A S, Moholdt G, Scambos T, et al. Increased west Antarctic and unchanged east Antarctic ice discharge over the last 7 years[J]. The Cryosphere, 2018,12(2):521-547. |
[28] | Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019,12(1):22-27. |
[29] | Sam L, Bhardwaj A, Kumar R, et al. Heterogeneity in topographic control on velocities of western Himalayan glaciers[J]. Scientific Reports, 2018,8:12843, doi: 10.1038/s41598-018-31310-y |
[30] | 武文娇, 章诗芳, 赵尚民. SRTM1 DEM 与ASTER GDEM V2 数据的对比分析[J]. 地球信息科学学报, 2017,19(8):1108-1115. |
[30] | [ Wu Wenjiao, Zhang Shifang, Zhao Shangmin. Analysis and comparison of SRTM1 DEM and ASTER GDEM V2 data[J]. Journal of Geo-information Science, 2017,19(8):1108-1115. ] |
[31] | Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J], The Cryosphere, 2011,5(2):349-358. |
[32] | 毛炜峄, 姚俊强, 陈静, 等. 1961—2017年东帕米尔高原极端升温过程气候变化特征[J]. 干旱区研究, 2019,36(6):1368-1378. |
[32] | [ Mao Weiyi, Yao Junqiang, Chen Jing, et al. Change characteristics of extreme temperature-rising process in the east Pamir Plateau from 1961 to 2017[J]. Arid Zone Research, 2019,36(6):1368-1378. ] |
[33] | 王磊, 蒋宗立, 刘时银, 等. 中巴公路沿线冰川运动特征[J]. 遥感技术与应用, 2019,34(2):412-423. |
[33] | [ Wang Lei, Jiang Zongli, Liu Shiyin, et al. Characteristic of glaciers’ movement along Karakoram highway[J]. Remote Sensing Technology and Application, 2019,34(2):412-423. ] |
[34] | 黄茂桓, 孙作哲. 我国大陆型冰川运动的某些特征[J]. 冰川冻土, 1982(2):35-45. |
[34] | [ Huang Maoheng, Sun Zuozhe. Some flow characteristics of continental-type glaciers in China[J]. Journal of Glaciology and Crypedology, 1982,4(2):35-44. ] |
[35] | Scherler D, Bookhagen B, Strecker M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011,4:156-159. |
[36] | Shrestha A B, Aryal R. Climate change in Nepal and its impact on Himalayan glaciers[J]. Regional Environmental Change, 2011,11(1):65-77. |
[37] | 张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017,72(9):1606-1620. |
[37] | [ Zhang Yong, Liu Siying. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China[J]. Acta Geographica Sinica, 2017,72(9):1606-1620. ] |
[38] | 曹敏, 李忠勤, 李慧林. 天山托木尔峰地区青冰滩72号冰川表面运动速度特征研究[J]. 冰川冻土, 2011,33(1):21-29. |
[38] | [ Cao Min, Li Zhongqin, Li Huilin. Features of the surface flow velocity on the Qingbingtan Glacier No. 72, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2011,33(1):21-29. ] |
/
〈 |
|
〉 |