2000—2018年中亚五国水分利用效率对气候变化的响应
收稿日期: 2020-06-15
修回日期: 2020-10-01
网络出版日期: 2021-03-09
基金资助
NSFC-新疆联合基金(U1903114);中科院西部之光交叉团队项目(E0284101)
Response of water use efficiency to climate change in five Central Asian countries from 2000 to 2018
Received date: 2020-06-15
Revised date: 2020-10-01
Online published: 2021-03-09
水分利用效率(Water use efficiency,WUE)是研究陆地碳水循环耦合的一种常用度量指标。基于MODIS的总初级生产力(GPP)和蒸散发(ET)数据,通过Slope趋势分析和敏感性分析等方法,研究了中亚WUE的时空变化规律及其对气候因子与干旱的动态响应。结果表明:(1) 2000—2018年,中亚年均WUE随着生境湿润程度的增加而升高(生长期规律与此相反),其中湿地WUE最高(1.820±0.10 g C·mm-1·m-2),而灌丛WUE最低(1.330±0.18 g C·mm-1·m-2)。(2) 中亚WUE呈略微下降趋势,每年下降速率为0.016 g C·mm-1·m-2,年均WUE的显著下降区域大于上升区域。WUE对年降水和年气温的敏感性均表现为正值区大于负值区且均存在阈值效应,降水敏感性阈值介于250~300 mm(低值点)和500~550 mm(高值点),温度阈值介于3~6 ℃(高值点)和9~12 ℃(低值点),且εNDVI(WUE对NDVI敏感性系数)与降水变化呈正相关关系,与气温变化呈负相关关系。(3) 通过WUE与标准化降水指数(SPEI)的相关性比较,发现WUE受干旱程度影响由大到小依次为灌丛、作物、森林、草原和湿地,且不同植被类型下WUE随着干旱程度的增加而升高。
郝海超,郝兴明,花顶,秦景秀,李玉朋,张齐飞 . 2000—2018年中亚五国水分利用效率对气候变化的响应[J]. 干旱区地理, 2021 , 44(1) : 1 -14 . DOI: 10.12118/j.issn.1000–6060.2021.01.01
Water use efficiency (WUE) is a commonly used measurement index for studying the coupling of the terrestrial carbon cycle and hydrological cycle. Using gross primary productivity and evapotranspiration of MODIS data, we assessed the spatial-temporal variation law of WUE in Central Asia and its dynamic response to climate factors and drought through the slope trend analysis approach, sensitivity analysis, among others. We found the following results. (1) From 2000 to 2018, the WUE mean value greatly fluctuated with habitat humidity increment (i.e., the growth period is contrary to the law). In contrast, its maximum value (1.82±0.10 g C·mm-1·m-2) was basically in the wetland region and its minimum value (1.33±0.18 g C·mm-1·m-2) in the shrubland. Generally, the WUE value is on a slight downward trend with an annual descending rate of 0.016 g C·mm-1·m-2. (2) The areas with WUE mean value on the significant downward trend were found greater than those on the significant rising trend. Furthermore, the sensitivity of WUE toward precipitation and air temperature both illustrated the areas with positive values to be greater than those with negative values. The sensitivity coefficient toward normalized difference vegetation index (εNDVI) showed a positive correlation with precipitation variation but negatively correlated with air temperature change. The sensitivity of WUE toward precipitation and air temperature both exist threshold effect with the range between 250-300 mm (low-value point) and 500-550 mm (high-value point) of precipitation sensitivity. Besides, the fittest temperature threshold of WUE variation ranged from 3-6 ℃ (low-value point) to 9-12 ℃ (high-value point). (3) WUE of grassland with abundant trees, mixed forest, and open shrub was positively correlated with standardized precipitation index (SPEI), with a correlation coefficient of 0.83, 0.81, and 0.70, respectively. On the other hand, the WUE of grassland with deciduous needle-leaf forest and permanent wetland was lowly correlated with SPEI, with a correlation coefficient of -0.35, -0.22, and 0.02, respectively. WUE is affected by the degree of drought and evolved in a descending way under shrub, crops, forest, grasslands, and wetlands while ascending with the drought degree increment under different vegetation types. The influence of drought degree toward WUE value on different habitats ranked in descending order (shrub, crop, forest, grassland, and wetland) but elevated with the increment in drought degree with different vegetation types.
Key words: Central Asia; sensitivity; climate change; water use efficiency; vegetation types
[1] | Baldocchi D D, Wilson K B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales[J]. Ecological Modelling, 2001,142(1-2):184. |
[2] | Niu S, Xing X, Zhang Z, et al. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe[J]. Global Change Biology, 2001,17(2):1073-1082. |
[3] | Zeri M, Hussain M Z, Anderson-teixeira K J, et al. Water use efficiency of perennial and annual bioenergy crops in central Illinois[J]. Journal of Geophysical Research Biogeosciences, 2013,118(2):581-589. |
[4] | 温永斌, 韩海荣, 程小琴, 等. 基于Biome-BGC模型的千烟洲森林水分利用效率研究[J]. 北京林业大学学报, 2019,41(4):69-77. |
[4] | [ Wen Yongbin, Han Hairong, Cheng Xiaoqin, et al. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019,41(4):69-77. ] |
[5] | Zhang T, Peng J, Liang W, et al. Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000—2010[J]. Science of the Total Environment, 2016,565(15):105-122. |
[6] | Deoliveir A G, Brunsell N A, Moraes E C, et al. Evaluation of MODIS-based estimates of water-use efficiency in Amazonia[J]. International Journal of Remote Sensing, 2017,38(19):5291-5309. |
[7] | Hu Z, Yu G, Fu Y, et al. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China[J]. Global Change Biology, 2008,14(7):1609-1619. |
[8] | Jassal R S, Black T A, Spittlehouse D L, et al. Evapotranspiration and water use efficiency in different-aged Pacific northwest Douglas-fir stands[J]. Agricultural & Forest Meteorology, 2009,149(6-7):1178. |
[9] | 于贵瑞, 王秋凤, 方华军. 陆地生态系统碳-氮-水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究, 2014,34(4):683-698. |
[9] | [ Yu Guirui, Wang Qiufeng, Fang Huajun. Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Sciences, 2014,34(4):683-698. ] |
[10] | Zheng H, Lin H, Zhou W, et al. Revegetation has increased ecosystem water-use efficiency during 2000—2014 in the Chinese Loess Plateau: Evidence from satellite data[J]. Ecological Indicators, 2019,102(Jul.):507-518. |
[11] | Tian H, Chen G, Liu M, et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895—2007[J]. Forest Ecology & Management, 2010,259(7):1311-1327. |
[12] | 陈秀妍, 付碧宏, 时丕龙, 等. 2000—2016年中亚天山植被变化及气候分异研究[J]. 干旱区地理, 2019,42(1):164-173. |
[12] | [ Chen Xiuyan, Fu Bihong, Shi Peilong, et al. Vegetation dynamics in response to climate change in Tianshan, Central Asia from 2000 to 2016[J]. Arid Land Geography, 2019,42(1):164-173. ] |
[13] | Zhao M, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote Sensing of Environment, 2005,95(2):164-176. |
[14] | Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011,115(8):1781-1800. |
[15] | 裴婷婷, 李小雁, 吴华武, 等. 黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报, 2019,35(5):119-125. |
[15] | [ Pei Tingting, LI Xiaoyan, Wu Huawu, et al. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(5):119-125. ] |
[16] | Yang Y, Guan H, Batelaan O, et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems[J]. Scientific Reports, 2016,6(1):1-8. |
[17] | 邹杰, 丁建丽, 杨胜天. 近15年中亚及新疆生态系统水分利用效率时空变化分析[J]. 地理研究, 2017,36(9):1742-1754. |
[17] | [ Zou Jie, Ding Jianli, Yang Shengtian. Spatial and temporal variation analysis of ecosystem water use efficiency in Central Asia and Xinjiang in recent 15 years[J]. Geographical Research, 2017,36(9):1742-1754. ] |
[18] | 邹杰, 丁建丽, 秦艳, 等. 遥感分析中亚地区生态系统水分利用效率对干旱的响应[J]. 农业工程学报, 2018,34(9):145-152. |
[18] | [ Zou Jie, Ding Jianli, Qin Yan, et al. Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,36(9):1742-1754. ] |
[19] | 梁倩, 光莹, 刘琼, 等. 新疆及周边中亚低涡背景下云中液态水分布研究[J]. 干旱区地理, 2020,43(1):72-78. |
[19] | [ Liang Qian, Guang Ying, Liu Qiong, et al. Distribution of total cloud liquid water in Xinjiang and its surrounding Central Asia under the background of low vortex in Central Asia[J]. Arid Land Geography, 2020,43(1):72-78. ] |
[20] | 胡广录, 赵文智, 王岗, 等. 干旱荒漠区斑块状植被空间格局及其防沙效应研究进展[J]. 生态学报, 2011,31(24):7609-7616. |
[20] | [ Hu Guanglu, Zhao Wenzhi, Wang Gang, et al. Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area[J]. Acta Ecologica Sinica, 2011,31(24):7609-7616. ] |
[21] | 刘春静, 张丽, 周宇, 等. 中国新疆及中亚五国干旱区草地覆盖度反演与分析[J]. 草业科学, 2016,33(5):861-870. |
[21] | [ Liu Chunjing, Zhang Li, Zhou Yu, et al. Retrieval and analysis of grassland coverage in arid Xinjiang, China and five countries of Central Asia[J]. Pratacultural Science, 2016,33(5):861-870. ] |
[22] | Dehghan S, Salehnia N, Sayari N, et al. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: A case study in Fars Province, Iran[J]. Journal of Arid Land, 2020,12(2):318-330. |
[23] | 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017,72(1):18-26. |
[23] | [ Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017,72(1):18-26. ] |
[24] | White M A, Brunsell N, Schwartz M D. Vegetation phenology in global change studies[J]. Phenology: An Integrative Environmental Science, 2003,39(7):453-466. |
[25] | Zou J, Ding J, Welp M, et al. Assessing the response of ecosystem water use efficiency to drought during and after drought events across Central Asia[J]. Sensors (Basel), 2020,20(3):581. |
[26] | Chen Y, Li Z, Fang G, et al. Large hydrological processes changes in the transboundary rivers of Central Asia[J]. Journal of Geophysical Research Atmospheres, 2018,123(10):5059-5069. |
[27] | 王旋旋, 陈亚宁, 李稚, 等. 基于模糊综合评价模型的中亚水资源开发潜力评估[J]. 干旱区地理, 2020,43(1):126-134. |
[27] | [ Wang Xuanxuan, Chen Yaning, Li Zhi, et al. Assessment of the development potential of water resources in Central Asia based on fuzzy comprehensive evaluation model[J]. Arid Land Geography, 2020,43(1):126-134. ] |
[28] | 张乐园, 王弋, 陈亚宁. 基于SPEI指数的中亚地区干旱时空分布特征[J]. 干旱区研究, 2020,37(2):331-340. |
[28] | [ Zhang Leyuan, Wang Yi, Chen Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index[J]. Arid Zone Research, 2020,37(2):331-340. ] |
[29] | 李炳元, 潘保田, 韩嘉福. 中国陆地基本地貌类型及其划分指标探讨[J]. 第四纪研究, 2008,28(4):535-543. |
[29] | [ Li Bingyuan, Pan Baotian, Han Jiafu. Basic terrestrial geomorphological types in China and their circumscriptions[J]. Quaternary Sciences, 2008,28(4):535-543. ] |
[30] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学:地球科学, 2011,41(11):1647-1657. |
[30] | [ Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China-Earth Sciences, 2011,41(11):1647-1657. ] |
[31] | Adams M A, Turnbull T L, Sprent J I, et al. Legumes are different: Leaf nitrogen, photosynjournal, and water use efficiency[J]. Proc Natl Acad Sci USA, 2016,113(15):4098-4103. |
[32] | Lenhart K, Eckhardt, et al. Comparison of two different approaches of sensitivity analysis[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2002,27(9-10):645-654. |
[33] | Zheng H G, Zhang L, Zhu R R, et al. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin[J]. Water Resource Research, 2009,45(7):641-648. |
[34] | Tang X G, Li H P, Ankur R, et al. How is water use efficiency of terrestrial ecosystems distributed and changing on Earth[J]. Scientific Reports, 2014(4):7483, doi: 10.1038/srep07483 |
[35] | Huang M, Piao S, Zeng Z, et al. Seasonal responses of terrestrial ecosystem water-use efficiency to climate change[J]. Global Change Biology, 2016,22(6):2165-2177. |
[36] | 龚婷婷, 雷慧闽, 杨大文, 等. 荒漠灌丛碳通量对极端水分和温度的响应研究[J]. 水力发电学报, 2018,37(2):32-46. |
[36] | [ Gong Tingting, Lei Huimin, Yang Dawen, et al. Assessing impacts of extreme water and temperature conditions on carbon fluxes in two desert shrublands[J]. Journal of Hydroelectric Engineering, 2018,37(2):32-46. ] |
[37] | 韩宇平, 张丽璇, 王春颖, 等. 寒区湿地实际蒸散发动态特征及影响因素研究[J]. 南水北调与水利科技, 2018,16(1):28-34. |
[37] | [ Han Yuping, Zhang Lixuan, Wang Chunying, et al. Dynamic characteristics and influencing factors of actual evapotranspiration in cold region wetland[J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(1):28-34. ] |
[38] | Luyssaert S, Inglima I, Jung R, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database[J]. Global Change Biology, 2007,13(12):2509-2537. |
[39] | Reichstein M, Papale D, Valentini R, et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites[J]. Geophysical Research Letters, 2007,34(1):L1402, doi: 10.1029/2006GL027880 |
[40] | Zhang T, Peng J, Liang W, et al. Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000—2010[J]. Science of the Total Environment, 2016,565(Sep. 15):105-122. |
[41] | Zhang F, Ju W, Shen S. How recent climate change influences water use efficiency in East Asia[J]. Theoretical & Applied Climatology, 2014,116(1-2):359-370. |
[42] | Salve R, Sudderth E A, Clair S B S, et al. Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns[J]. Journal of Hydrology, 2011,410(1-2):51-61. |
[43] | 夏磊. 全球陆地生态系统水分利用效率及人为用地植被缺失热效应估算[D]. 北京:中国科学院大学, 2015. |
[43] | [ Xia Lei. Water use efficiency in global terrestrial ecosystems and estimate of heat balance relating to vegetation in artificial areas[D]. Beijing: University of Chinese Academy of Sciences, 2015. ] |
/
〈 |
|
〉 |