2001—2017 年三江源区典型草地群落碳源/ 汇模拟及动态变化分析

展开
  • 重庆交通大学建筑与城市规划学院,重庆 400074
陈雪娇(1995-),女,硕士研究生,地图学与地理信息系统. E-mail:946095974@qq.com

收稿日期: 2019-01-23

  修回日期: 2020-06-02

  网络出版日期: 2020-11-25

基金资助

中国博士后基金项目(2019M650821);重庆市教委基础科学与前沿技术项目(KJQN20180070);国家自然科学基金项目 (41501575);国家重点研发计划项目(2019YFB2102503)

Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source Area from 2001 to 2017

Expand
  • Chongqing Jiaotong University,College of Architecture and Urban Planning,Chongqing 400074, China

Received date: 2019-01-23

  Revised date: 2020-06-02

  Online published: 2020-11-25

摘要

碳源/汇是解释地球大气碳循环过程的重要指标,探究三江源的碳源/汇特征对于理解该地 区植被对全球气候变化的响应具有重要意义。三江源以脆弱的草地生态系统为主,且对全球气候 变化非常敏感。该地区生态环境极其脆弱,大部分地区条件恶劣导致实测数据稀缺,很难对该地 区的碳源/汇时空格局进行完整剖析。因此通过以三江源 5 种典型草地群落(金露梅、紫花针茅、风 毛菊、小蒿草、及青藏薹草群落)为研究对象,基于 BIOME-BGC 模型,利用地理数据、气象数据和植 被生理参数等数据,得出 2001—2017 年三江源草地群落的净初级生产力(NPP)、净生态系统生产 力(NEP)模拟值,并对草地群落 NPP、NEP 变化特征与气温、降水相关性以及碳利用效率变化等特 征进行了综合分析。结果表明:三江源区 NPP、NEP 在空间格局上,表现为由东南向西北数值逐渐 递减趋势;5 种典型草地群落多年 NPP 均呈现逐年增高趋势,其平均值为 196.06 g C·m -2·a -1。其 中,金露梅群落 NPP 平均值最高为 342.00 g C·m -2·a -1,青藏薹草群落 NPP 平均值最低为 55.93 g C·m -2·a -1;5 种草地群落 NEP 的多年平均值为 49.02 g C·m -2·a -1,金露梅、紫花针茅及青藏薹草 3 种植 被群落的 NEP 值呈缓慢的上升趋势,风毛菊和小蒿草群落呈缓慢下降趋势。研究发现三江源草地 生态系统具有显著的碳汇作用,且不同群落 NPP、NEP 对气温和降水的响应程度有所差异,5 种群 落 NPP 与气温均呈显著正相关,但 NPP、NEP 与降水量的相关性较低;5 种群落均具有较强固碳潜 力,除金露梅外其余植被群落的碳利用率均在 0.625 以上。

本文引用格式

陈雪娇, 周伟, 杨晗 . 2001—2017 年三江源区典型草地群落碳源/ 汇模拟及动态变化分析[J]. 干旱区地理, 2020 , 43(6) : 1583 -1592 . DOI: 10.12118/j.issn.1000-6060.2020.06.20

Abstract

In this paper, five typical grassland communities (Potentilla fruticosa, Stipa purpurea, Saussurea japonica, Kobresia pygmaea, and Carex moorcroftii communities) in the Three River Source Area, Qinghai Province, China were selected as research objects. Basic geographic data, meteorological data, and vegetation physiological parameters data were used to estimate the net primary productivity (NPP) and the net ecosystem productivity (NEP) in these grassland communities from 2001 to 2017 based on the BIOME-BGC model. This paper also investigated the change characteristics of NPP and NEP and their correlation with temperature and precipitation. The characteristics of the change of the carbon use efficiency (CUE) were also explored. Results showed that the spatial pattern of the values of NPP and NEP in the Three River Source Area reduced gradually from southeast to northwest. The multi-year average value of NPP in 5 typical grassland communities was 196.06 g C·m-2·a-1, which showed an increasing trend year by year. Among them, the annual average value of NPP in Potentilla fruticosa was the highest (342.00 g C·m-2·a-1), and the annual average value of NPP in Carex moorcroftii seagrass was the lowest (55.93 g C·m- 2 ·a- 1). The annual mean value of NEP of the five grassland communities was 49.02 g C·m- 2 ·a- 1. The NEP values of Potentilla fruticosa, Stipa purpurea and Carex moorcroftii increased slowly, while the NEP values of Saussurea japonica and Kobresia pygmaea decreased slowly. Therefore, the grassland ecosystem in the Three River Source Area has significant carbon sequestration function of absorbing CO2. A significant positive correlation between NPP and temperature was observed, while a low correlation between NPP, NEP, and precipitation existed. All the five communities have great potential for carbon sequestration. The carbon utilization rate of other vegetation communities was above 0.625, except the Potentilla fruticosa.

参考文献

[1] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态 经济价值的初步研究[J]. 生态学报, 1999, 19(5) : 19-25. [OUY⁃ ANG Zhiyun, WANG Xiaoke, MIAO Hong. A primary study on Chinese terrestrial ecosystem services and their ecological eco⁃ nomic values[J]. Acta Ecologica Sinica, 1999, 19(5): 19-25. ] [2] 张峰, 周广胜, 王玉辉. 基于 CASA 模型的内蒙古典型草原植被 净初级生产力动态模拟[J]. 植物生态学报, 2008, 32(4): 786- 797. [ZHANG Feng, ZHOU Guangsheng, WANG Yuhui. Dynam⁃ ics simulation of net primary productivity by a satellite data-driv⁃ ing CASA model in Inner Mongolian typical steppe, China[J]. Jour⁃ nal of Plant Ecology, 2008, 32(4): 786-797. ] [3] 赵灿, 张宇清, 秦树高, 等. 3 种典型沙生灌木 NPP 及其分配格 局 [J]. 北 京 林 业 大 学 学 报, 2014, 36(5): 62- 67. [ZHAO Chan, ZHANG Yuqing, QING Shugao, et al. NPP and its distribution pat⁃ tern of three typical sandy shrubs[J]. Journal of Beijing Forestry University, 2014, 36(5) : 62-67. ] [4] SCHULZE E D, LLOYD J, KELLIHER F M, et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink: A synthesis[J]. Global Change Biology, 1999, 5 (6): 703-722. [5] 方精云, 朴世龙, 赵淑清. CO2 失汇与北半球中高纬度陆地生态 系 统 的 碳 汇 [J]. 植 物 生 态 学 报, 2001, 25(5): 594- 602. [FANG Jingyun, PIAO Shilong, ZHAO Shuqing. The carbon sink the role of the middle and high latitudes terrestrial ecosystems in the north⁃ ern hemisphere[J]. Chinese Journal of Plant Ecology, 2001, 25(5) : 594-602. ] [6] 邱丽莎, 何毅, 张立峰, 等. 祁连山 MODIS LST 时空变化特征及 影响因素分析[J]. 干旱区地理, 2020, 43(3): 726-737. [QIU Li⁃ sha, HE Yi, ZHANG Lifeng, et al. Grassland yield change in Qing⁃ hai Province based on MODIS data[J]. Arid Land Geography, 2020, 43(3): 726-737. ] [7] LIETH H. Modeling the primary productivity of the World[J]. Pri⁃ mary Productivity of the Biosphere, 1975, 14(1): 237-263. [8] BRADFORD J B, HICKE J A, LAUENROTH W K. The relative importance of light-use efficiency modifications from environmen⁃ tal conditions and cultivation for estimation of large-scale net pri⁃ mary productivity[J]. Remote Sensing of Environment, 2005, 96 (2): 246-255. [9] 高清竹, 万运帆, 李玉娥, 等. 基于 CASA 模型的藏北地区草地 植被净第一性生产力及其时空格局[J]. 应用生态学报, 2007, 18(11): 2526-2532. [GAO Qingzhu, WAN Yunfan, LI Yue, et al. Grassland net primary productivity and its spatial temporal distri⁃ bution in northern Tibet: A study with CASA model[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2526-2532. ] [10] 童志辉, 熊助国, 孙睿, 等. 利用多源数据估算黑河流域总初级 生 产 力 [J]. 干 旱 区 地 理, 2020, 43(2): 440- 448. [TONG Zhihui, XIONG Zhuguo, SHUN Rui, et al. Estimating gross primary pro⁃ duction in the Heihe River Basin from multiple data sources[J]. Ar⁃ id Land Geography, 2020, 43(2): 440-448. ] [11] PARTON W J, SCURLOCK J M O, OJIMA D S, et al. Observa⁃ tions and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cy⁃ cles, 1993, 7(4): 785-809. [12] LIU J, CHEN J M, CIHLAR J, et al. A process-based boreal eco⁃ system productivity simulator using remote sensing inputs[J]. Rem Sens Environ, 1997, 62(2): 158-175. [13] 冯险峰, 孙庆龄, 林斌. 区域及全球尺度的 NPP 过程模型和 NPP 对 全 球 变 化 的 响 应 [J]. 生 态 环 境 学 报, 2014, 23(3): 496- 503. [FENG Xianfeng, Sun Qingling, Lin Bin. NPP process models ap⁃ plied in regional and global scales and responses of NPP to the global chenge[J]. Ecology and Environmental Sciences, 2014, 23 (3): 496-503. ] [14] 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证 据[J]. 科学通报, 1998, 43(6): 633. [FENG Song, TANG Maocang, WANG Dongmei. New evidence for the Qinghai- Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chi⁃ nese Science Bulletin, 1998, 43(6): 633. ] [15] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题 [J]. 科 学 通 报, 2000, 45(1): 98- 106. [YAO Tandong, LIU Xia⁃ odong, WANG Ninglian. Amplitude of climatic changes in Qing⁃ hai-Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(1): 98- 106. ] [16] 许洁, 陈惠玲, 商沙沙, 等. 2000—2014 年青藏高原植被净初级 生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592- 601. [XU Jie, CHEN Huiling, SHANG Shasha, et al. Response of net primary productivity of Tibetan Plateau vegetation [J]. Arid Land Geography, 2020, 43(3): 592-601. ] [17] WHITE M A, THORNTON P E, RUNNING S W, et al. Parameter⁃ ization and sensitivity analysis of the BIOME-BGC terrestrial eco⁃ system model: Net primary production controls[J]. Earth Interac⁃ tions, 2000, 4(3): 1-84. [18] REEVES M C, MORENO A L, BAGNE K E, et al. Estimating cli⁃ mate change effects on net primary production of rangelands in the United States[J]. Climatic Change, 2014, 126(3-4): 429-442. [19] COLLATZG J, BALL J T, GRIVET C, et al. Physiological and en⁃ vironmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agri Forest Met, 1991, 54(2-4): 107-136. [20] LOBELL D B, HICKE J A, ASNER G P, et al. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982—1998[J]. Global Change Biology, 2010, 8(8): 722-735. [21] 除多, 德吉央宗, 普布次仁, 等. 西藏藏北高原典型植被生长对 气候要素变化的响应[J]. 应用气象学报, 2007, 18(6): 832-839. [CHU Duo, DEJI Yangzong, PUBU Ciren, et al. The response of typical vegetation growth to climate conditions in north Tibetan Plateau[J]. Journal of Applied Meteorological Science, 2007, 18 (6): 832-839. ] [22] 张镱锂, 丁明军, 张玮, 等. 三江源地区植被指数下降趋势的空 间 特 征 及 其 地 理 背 景 [J]. 地 理 研 究, 2007, 26(3): 500- 507. [ZHANG Yili, DING Mingjun, ZHANG Wei, et al. Spatial charac⁃ teristic of vegetation change in the source regions of the Yangtze River, Yellow River and Lancang River in China[J]. Geographical Research, 2007, 26(3): 500-507. ] [23] 赵俊芳, 延晓冬, 贾根锁. 东北森林净第一性生产力与碳收支对 气 候 变 化 的 响 应 [J]. 生 态 学 报, 2008, 28(1): 92- 102. [ZHAO Junfang, YAN Xiaoddong, JIA Gensuo. Simulating the responses of forest net primary productivity and carbon budget to climate change in northeast China[J]. Acta Ecologica Sinica, 2008, 28(1) : 92-102. ] [24] LUYSSAERT S, INGLIMA I, JUNG M, et al. CO2 balance of bore⁃ al, temperate, and tropical forests derived from a global database [J]. Glob Change Biol, 2007, 13(12): 2509-2537. [25] 裴志永, 周才平, 欧阳华, 等. 青藏高原高寒草原区域碳估测[J]. 地理研究, 2010, 29(1): 102-110. [PEI Zhiyong, ZHOU Caiping, OUYANG Hua, et al. A carbon budget of alpine steppe area in the Tibetan Plateau[J]. Geographical Research, 2010, 29(1): 102-110. ] [26] DILLAWAY D N, KRUGER E L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America[J]. Global Change Bi⁃ ology, 2014, 20(3): 908-922. [27] 袁旻舒, 李明旭, 程红岩, 等. 基于 CMIP5 模型结果的中国陆地 生态系统未来碳利用效率变化趋势分析[J]. 中国科学院大学 学报, 2017, 34(4): 452-461. [YUAN Minshu, LI Mingxu, CHENG Hongyan, et al. Future trends in carbon use efficiency for Chinese terrestrial ecosystem based on CMIPS model results[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 452- 461. ] [28] 陈光水, 杨玉盛, 高人, 等. 杉木林年龄序列地下碳分配变化[J]. 植 物 生 态 学 报, 2008, 32(6): 1285-1293. [CHEN Guangshui, YANG Yusheng, GAO Ren, et al. Changes in belowground carbon al⁃ location in a Chinese fir chrono sequence in Fujian Province, China [J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1285-1293. ] [29] 安相, 陈云明, 唐亚坤. 东亚森林、草地碳利用效率及碳通量空 间变化的影响因素分析[J]. 水土保持研究, 2017, 24(5): 79-87. [AN Xiang, CHEN Yunming, TANG Yakun. Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in East Asian forest and grassland[J]. Research of Soil and Water Conser⁃ vation, 2017, 24(5): 79-87. ]
文章导航

/