乌兰布和沙漠典型植物群落土壤风蚀可蚀性研究

展开
  • 1 北京林业大学水土保持学院,北京 100083; 2 北京林业大学水土保持国家林业局重点实验室,北京 100083
王佳庭(1995-),男,汉族,内蒙赤峰人,硕士研究生. E-mail: wjt_1995@163.com

收稿日期: 2020-01-09

  修回日期: 2020-12-03

  网络出版日期: 2020-11-25

基金资助

国家重点研发计划项目“沙区生态产业技术推广模式及政策研究”(2017YFC0506705)

Soil erosibility of typical plant communities in Ulan Buh Desert

Expand
  • 1 School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2 Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Received date: 2020-01-09

  Revised date: 2020-12-03

  Online published: 2020-11-25

摘要

为探明植被恢复对乌兰布和沙漠土壤风蚀可蚀性的影响,以乌兰布和沙漠内不同沙地固 定阶段的 8 种典型植物群落及群落内表土作为研究对象,对土壤物理因子(可蚀性颗粒含量、土壤 含水量、有机质含量)、土壤结皮因子、植被因子 3 类土壤风蚀可蚀性因子指标进行监测,分析土壤 风蚀可蚀性因子在不同植物群落类型间、沙地固定阶段间的差异。结果表明:(1)在乌兰布和沙漠 典型植物群落中,沙蓬、沙生针茅、盐爪爪等草本植物群落的土壤风蚀可蚀性最强,白刺、梭梭、沙 冬青等灌木植物群落土壤风蚀可蚀性弱于草本植物群落,说明灌木林能显著降低土壤风蚀作用。 (2)随着沙地的不断固定,土壤结构不断发育,土壤可蚀性不断降低,土壤风蚀可蚀性强弱表现为 固定沙地<半固定沙地<流动沙地。(3)土壤可蚀性颗粒含量、土壤有机质含量、土壤含水量、土壤结 皮、植被因子与植被类型及沙地固定阶段具有显著相关关系。因此,在沙区生态建设工程中,为了 减少土壤风蚀量,不仅要考虑物种的选择,还要促进人工生态系统的演替和恢复,从而有效降低土 壤风蚀可蚀性。研究结果可为乌兰布和沙区植被生态系统服务功能的科学评价、防沙治沙工程的 建设与管理提供一定参考。

本文引用格式

王佳庭, 于明含, 杨海龙, 吴其淦, 刘泰含 . 乌兰布和沙漠典型植物群落土壤风蚀可蚀性研究[J]. 干旱区地理, 2020 , 43(6) : 1543 -1550 . DOI: 10.12118/j.issn.1000-6060.2020.06.15

Abstract

In order to figure out the effect of vegetation restoration on the wind erodibility of the soil in Ulan Buh Desert, Inner Mongolia, China, eight typical plant communities (Nitraria tangutorum Bobr., Ammopiptanthus mongolicus Cheng f., Phragmites communis (Cav.) Trin. ex Steud., Artemisia ordosica Krasch., Stipa glareosa P. Smirn., Kalidium foliatum Moq., Agriophyllum squarrosum (L.) Moq., Haloxylon ammodendron Bunge.) in Ulan Buh Desert were investigated in this study. The topsoil in each community at different sand fixing stages was sampled and the soil physical factors (erodible particle content, soil water content, organic matter content), soil crust factor index, and vegetation factor index were monitored to analyze the differences of soil erodible factors among different plant community types and sand fixation stages. Results showed that: (1) In Ulan Buh Desert, the erodible particle content in different plant communities was in the range of 85.23%-91.64%, organic matter content was in the range of 0.42- 3.16 g · kg- 1, soil water content was 11.10- 18.30 g · kg- 1, soil crust factor index was 0.83- 0.99, and vegetation factor index was 0.29- 0.67. (2) The erodible particle content, organic matter content, and soil water content in shrub communities (S. glareosa, K. foliatum, A. squarrosum) were higher than that in herbaceous communities (N. tangutorum, A. mongolicus, H. ammodendron). It can be concluded that wind erosion erodibility of shrub communities is weaker than that of herbaceous communities, indicating a stronger ability in reducing soil wind erosion in shrub community. Vegetation type significantly affects the topsoil erodibility through the way of improving topsoil granulometric composition and organic matter content. P. communis had a significantly higher soil water content that other herbaceous communities since its living condition was always in a low-lying area. (3) The erodible particle content of topsoil shows a decreased tendency in the order of flowing sandy land, semi-fixed sandy land, and fixed sandy land. Meanwhile, organic matter content and soil crust factor of topsoil shows an increased tendency in the order of flowing sandy land, semi-fixed sandy land, and fixed sandy land. No significant difference is observed with the soil water content and vegetation factor among the sand fixation stages. Sand fixation had a significant effect on the topsoil erodibility through the way of improving topsoil granulometric composition and organic matter content, and enhancing biocrusts growth. (4) Soil erodible particles, soil organic matter content, soil water content, soil crust factor index, and vegetation factor index had significant correlations with vegetation types and sand fixation stages. Therefore, to reduce soil wind erosion, both plant species selection and community succession promotion should be considered in ecological construction in the sandy area. This research provided supports for evaluating the ecological function of vegetation ecosystem and guiding the construction sandy desertification combating projects in Ulan Buh Desert.

参考文献

[1] 刘斌, 高永, 高志海, 等. 土壤风蚀新技术应用研究进展[J]. 内蒙 古林业科技, 2017, 43(2): 52-57. [LIU Bin, GAO Yong, GAO Zhi⁃ hai, et al. Research progress on new technology of soil wind erosion [J]. Inner Mongolia Forestry Science and Technology, 2017, 43(2): 52-57. ] [2] 南 岭, 杜 灵 通, 展 秀 丽. 土 壤 风 蚀 可 蚀 性 研 究 进 展 [J]. 土 壤, 2014, 46(2): 204-211. [NAN Ling, DU Lingtong, ZHAN Xiuli. Ad⁃ vances in study on soil erodibility for wind erosion[J]. Soils, 2014, 46(2): 204-211. ] [3] CHEPIL W S. Measurement of wind erosiveness of soils by the dry sieving procedure[J]. Scientific Agriculture, 1942, 23(3): 145-160. [4] CHEPIL W S. Properties of soil which influence wind erosion: Ⅰ The governing principle of surface roughness[J]. Soil Science, 1950, 69: 149-162. [5] CHEPIL W S. Properties of soil which influence wind erosion: Ⅱ Dry aggregate structure as an index of erodibility[J]. Soil Science, 1950, 69: 403-414. [6] 董光荣, 李长治, 金炯, 等. 关于土壤风蚀风洞实验的某些研究 结果[J]. 科学通报, 1987, 32(4): 277-301. [DONG Guangrong, LI Changzhi, JIN Jiong, et al. Some results of wind tunnel experi⁃ ments on soil erosion[J]. Chinese Science Bulletin, 1987, 32(4): 277-301. ] [7] 董治宝, 陈渭南, 李振山, 等. 植被对土壤风蚀影响作用的实验 研究[J]. 土壤侵蚀与水土保持学报, 1996, (2): 1-8. [DONG Zhi⁃ bao, CHEN Weinan, LI Zhenshan, et al. The laboratory study on the role of vegetation in soil erosion by wind, Institute of Desert Research, Chinese Academy of Sciences[J]. Research of Soil and Water Conservation, 1996, (2): 1-8. ] [8] GUO Z L, CHANG C, WANG R D, et al. Comparison of different methods to determine wind-erodible fraction of soil with rock frag⁃ ments under different tillage/management[J]. Soil and Tillage Re⁃ search, 2017, 168. [9] 陈宇轩, 张飞岳, 高广磊, 等. 科尔沁沙地樟子松人工林土壤粒 径 分 布 特 征 [J]. 干 旱 区 地 理, 2020, 43(4): 1051- 1058. [CHEN Yuxuan, ZHANG Feiyue, GAO Guanglei, et al. Soil particle size dis⁃ tribution of Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land[J]. Arid Land Geography, 2020, 43(4): 1051-1058. ] [10] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤 学 报, 2007, (1): 7- 13. [ZHANG Keli, PENG Wenying, YANG Hongli. Soil erodibility and its estimation for agriculture soil in China[J]. Acta Pedologica sinica, 2007, (1): 7-13. ] [11] WOODEYFF N P, SIDDOWAY F H. A wind erosion equation[J]. Soil Science Society of America Proceedings, 1956, 29: 602-608. [12] 刘目兴. 土壤风蚀可蚀性研究综述及其在风蚀预报中的应用 [C] // 中国土壤学会. 土壤资源持续利用和生态环境安全—— 中国土壤学会第十一届二次理事扩大会议暨学术会议论文 集. 中国土壤学会: 中国土壤学会, 2009: 164-172. [LIU Mux⁃ ing. A review of soil wind erodion erodibility and its application in wind erosion perdiction[C]//Soil Science Society of China. Proceed⁃ ings of the 11th Expanded and Academic Conference of the Soil Science Socity of China: Sustainable utilization of soil resources and safety of ecological environment. Nanjing: Soil Science Soci⁃ ety of China, 2009: 164-172.] [13] 刘芳, 郝玉光, 徐军, 等. 乌兰布和沙区风沙运移特征分析[J]. 干 旱 区 地 理, 2014, 37(6): 1163- 1169. [LIU Fang, HAO Yuguang, XU Jun, et al. Sand flow characteristics in Ulan Buh Desert[J]. Ar⁃ id Land Geography, 2014, 37(6): 1163-1169. ] [14] 于宝勒, 吴文俊, 赵学军, 等. 内蒙古京津风沙源治理工程土壤 风 蚀 控 制 效 益 研 究 [J]. 干 旱 区 研 究, 2016, 33(6): 1278- 1286. [YU Baole, WU Wenjun, ZHAO Xuejun, et al. Benefits of soil wind erosion control of the Beijing-Tianjin sand source control project in Inner Mongolia[J]. Arid Zone Research, 2016, 33(6): 1278-1286. ] [15] 李有奇. 乌兰布和沙漠治理状况及今后发展对策[J]. 内蒙古林 业, 2007, (11): 25. [LI Youqi. The situation of Ulan Buh Desert management and its future development countermeasures[J]. Jour⁃ nal of Inner Mongolia Forestry, 2007, (11): 25. ] [16] 贾鹏, 王乃昂, 程弘毅, 等. 基于 3S 技术的乌兰布和沙漠范围和 面积分析[J]. 干旱区资源与环境, 2015, 29(12): 131-138. [JIA Peng, WANG Naiang, CHENG Hongyi, et al. A study on the range and area of Ulan Buh Desert based on 3S technology[J]. Journal of Arid Land Resources and Environment, 2015, 29(12): 131-138. ] [17] ZHU G Y, TANG Z S, ZHOU P, et al. Factors affecting the spatial and temporal variations in soil erodibility of China[J]. Journal of Geophysical Research. Earth Surface, 2019, 124(3): 737-749. [18] 邢春燕, 郭中领, 常春平, 等. RWEQ 模型在河北坝上地区的适 用 性 [J]. 中 国 沙 漠, 2018, 38(6): 1180- 1192. [XING Chunyan, GUO Zhongling, CHANG Chunping, et al. Validation of RWEQ model in the bashang area, Hebei, China[J]. Journal of Desert Re⁃ search, 2018, 38(6): 1180-1192. ] [19] 马月存, 陈源泉, 隋鹏, 等. 土壤风蚀影响因子与防治技术[J]. 生 态 学 杂 志, 2006, (11): 1390- 1394. [MA Yuecun, CHEN Yuan⁃ quan, SUI Peng, et al. Research advances in affecting factors and prevention techniques of soil wind erosion[J]. Chinese Journal of Ecology, 2006, (11): 1390-1394. ] [20] 任宏晶, 李生宇, 雷加强, 等. 不同覆盖度沙粒胶结体风蚀抑制 效益研究[J]. 干旱区地理, 2020, 43(1): 56-63. [REN Hongjing, LI Shengyu, LEI Jiaqiang, et al. Field experiment about inhibitory effects on wind erosion of sand cemented bodies with different cov⁃ erage[J]. Arid Land Geography, 2020, 43(1): 56-63. ] [21] 李晓原, 张文太, 李建贵, 等. 伊犁河谷沟壑区坡面尺度地形、植 被与土壤性质的相互关系[J]. 新疆农业大学学报, 2016, 39(6): 477-482. [LI Xiaoyuan, ZHANG Wentai, LI Jiangui, et al. Corre⁃ lation among terrain, vegetation and soil properties at hillslope scale topography in Ili Valley[J]. Journal of Xinjiang Agricultural University, 2016, 39(6): 477-482. ] [22] 邢恩德, 马少薇, 郭建英, 等. 植被盖度对典型草原区地表风沙 流结构及风蚀量影响[J]. 水土保持研究, 2015, 22(6): 331-334. [XING Ende, MA Shaowei, GUO Jianying, et al. Effect of vegeta⁃ tion cover on sandstorm structure and rate of wind erosion in typi⁃ cal steppe[J]. Research of Soil and Water Conservation, 2015, 22 (6): 331-334. ] [23] 宋阳, 刘连友, 严平, 等. 土壤可蚀性研究述评[J]. 干旱区地理, 2006, 29(1): 124- 131. [SONG Yang, LIU Lianyou, YAN Ping, et al. A review of soil erodibility research[J]. Arid Land Geography, 2006, 29(1): 124-131. ] [24] 李胜功, 常学礼, 赵学勇. 沙蓬—流动沙丘先锋植物的研究[J]. 干 旱 区 资 源 与 环 境, 1992, (4): 63- 70. [LI Shenggong, CHANG Xueli, ZHAO Xueyong. Study of Agriophyllum squarrosum pioneer⁃ ing plant on shifting sand[J]. Journal of Arid Land Resources and Environment, 1992, (4): 63-70. ] [25] 王珏, 宝音陶格涛. 荒漠草原沙生针茅群落组成及其地上生物 量研究 [J]. 中国草地学报, 2014, 36(3): 108-111. [WANG Jue, Baoyin Taogetao. Species composition and the aboveground bio⁃ mass of Stipa glareosa community in desert steppe[J]. Chinese Journal of Grassland, 2014, 36(3): 108-111. ] [26] 马晓静, 郭艳菊, 张嘉玉, 等. 宁夏盐池县沙化草地土壤团聚体 分异特征[J]. 草业学报, 2020, 29(3): 27-37. [MA Xiaojing, GUO Yanju, ZHANG Jiayu, et al. Size distribution of soil aggregates in different grassland desertification in Yanchi County, Ningxia[J]. Acta Prataculturae Sinica, 2020, 29(3): 27-37] [27] 吴汪洋, 张登山, 田丽慧, 等. 青海湖克土沙地沙棘林的防风固 沙 机 制 与 效 益 [J]. 干 旱 区 地 理, 2014, 37(4): 777- 785. [WU Wangyang, ZHANG Dengshan, TIAN Lihui, et al. Mechanism and benefit of wind- prevention and sand- fixation of Hippophae rham⁃ noides forestation in Ketu Sandy Land around Qinghai Lake[J]. Ar⁃ id Land Geography, 2014, 37(4): 777-785. ] [28] 移小勇, 赵哈林, 赵学勇, 等. 不同风沙土含水量因子的抗风蚀 性[J]. 土壤学报, 2006, (4): 684-687. [YI Xiaoyong, ZHAO Halin, ZHAO Xueyong, et al. Erodibility of aeolian soils in moisture con⁃ tent [J]. Acta Pedologica Sinica, 2006, (4): 684-687. ] [29] 吴楠, 张元明, 潘惠霞, 等. 古尔班通古特沙漠苔藓结皮中可培 养细菌多样性特征[J]. 干旱区地理, 2014, 37(2): 250-258. [WU Nan, ZHANG Yuanming, PAN Huixia, et al. Culture- dependent bacteria diversity of moss crusts in the Gurbantunggut Desert[J]. Arid Land Geography, 2014, 37(2): 250-258. ] [30] 谭凤翥, 王雪芹, 王海峰, 等. 柽柳灌丛沙堆及丘间地蚀积分布 随背景植被变化的风洞实验[J]. 干旱区地理, 2018, 41(1): 56- 65. [TAN Fengzhu, WANG Xueqin, WANG Haifeng, et al. Wind tunnel simulation on distribution change of erosion and deposition around nebkhas and interdune under different background vegeta⁃ tion coverage[J]. Arid Land Geography, 2018, 41(1): 56-65. ] [31] 王陇, 高广磊, 张英, 等. 毛乌素沙地风沙土粒径分布特征及其 影 响 因 素 [J]. 干 旱 区 地 理, 2019, 42(5): 1003- 1010. [WANG Long, GAO Guanglei, ZHANG Ying, et al. Particle size distribu⁃ tion of aeolian soils in the Mu Us Sandy Land and the influence factors[J]. Arid Land Geography, 2019, 42(5): 1003-1010. ]
文章导航

/