半干旱黄土丘陵区退化人工林群落结构 调整下细根特征分析

展开
  • 1 华北水利水电大学测绘与地理信息学院,河南 郑州 450045; 2 河南省科学院地理研究所,河南 郑州 450052
李浩(1995-),男,河北省唐山市,硕士研究生,主要从事植被恢复与土壤生态学的研究.

网络出版日期: 2020-11-25

基金资助

国家重点研发计划项目(2016YFC0501701);国家自然科学基金项目(41801103);河南省科学院杰青人才培养专项(190401002)

Fine root characteristics of degraded artificial forest under community structure adjustment in semiarid loess hilly region

Expand
  • 1 School of Surveying and Geo-informatics, North China University of Water Resource and Electric Power, Zhengzhou 450045, Henan, China; 2 Institute of Geography Science, Henan Academy of Sciences, Zhengzhou 450052, Henan, China

Online published: 2020-11-25

摘要

根系尤其细根在植物的生长发育中起着重要作用,以甘肃省定西市巉口镇龙滩流域的白 杨及山杏 2 种典型退化人工林为研究对象,研究了人工林群落结构调整后形成的白杨+5 年生油 松、白杨+10 年生油松及山杏+云杉、山杏+樟子松混交林与单一纯林相比不同深度、不同径级下细 根的根长密度、根面积密度、根生物量密度、比根长及比根面积,以期揭示不同人工林恢复模式下 的细根分布特征。结果表明:(1)混交恢复模式起到了一定的积极作用,大部分混交林相较于纯林 细根的根长密度、根面积密度及根生物量密度在土壤表层均有所提高。混交林细根在浅层的占比 得到了提高,且随恢复年限的增加而升高。(2)细根根长密度、根面积密度及根生物量密度与土壤 全碳、全氮、含水量及有机碳之间以及比根长及比根面积与土壤全碳、土壤全氮及有机碳之间均存 在显著正相关关系。

本文引用格式

李浩, 胡婵娟, 冯德显, 赵荣钦, 郭 雷, 满洲 . 半干旱黄土丘陵区退化人工林群落结构 调整下细根特征分析[J]. 干旱区地理, 2020 , 43(6) : 1523 -1533 . DOI: 10.12118/j.issn.1000-6060.2020.06.13

Abstract

This study was conducted in Longtan watershed, Chankou Town, Dingxi City, Gansu Province, China in order to reveal the fine roots distribution characteristics of different plantation restoration patterns. Two typical degraded artificial forests in this study area included Populus tomentosa and Armeniaca sibirica, and their adjusted mixed forests included Populus tomentosa with 5- year- old Pinus tabuliformis, Populus tomentosa with 10- year- old Pinus tabuliformis, Armeniaca sibirica with Picea asperata, and Armeniaca sibirica with Pinus sylvestris. The root length density, root area, root biomass density, specific root length and specific root area of fine roots of the mentioned forests were compared in different soil depth and diameter degree. The roots of different soil layers in sampling plots were collected by root-drilling method. In the lab, the roots were scanned by a root scanner and were classified by WinRHIZO software. Excel 2003 and SPSS 24 software were used for data analysis. One-way ANOVA and LSD method were used to compare the significant differences of various indicators between vegetation restoration patterns and different soil layers. In a 0- to 10- cm soil layer, results showed that the mixed restoration model played a positive role in the increase of the growth of plant roots, root area density, and root biomass density of most mixed forests in the surface soil layer compared with that of the pure forest. Specifically, the root length density of Armeniaca sibirica with Picea asperata and Armeniaca sibirica with Pinus sylvestris were 2.85 cm ? cm- 3 and 2.08 cm?cm-3, respectively, which were higher than that of Armeniaca sibirica (1.65 cm?cm-3). Similarly, higher root area densities were observed with the two mixed forests (27.48 cm2 ? cm- 3 and 20.00 cm2 ? cm- 3, respectively) compared to that of Armeniaca sibirica (16.21 cm2 ? cm- 3). Finally, the root biomass density of the two mixed forests were 1.25 mg?cm-3 and 1.36 mg?cm-3, respectively, which were higher than that of Armeniaca sibirica (1.03 mg?cm-3). The root length density, root area density, and root biomass density of Populus tomentosa with 5- year- old Pinus tabuliformis and Populus tomentosa with 10- year- old Pinus tabuliformis were 1.52 cm ? cm- 3 and 2.11 cm ? cm- 3, 18.16 cm2 ?cm- 3 and 26.46 cm2 ?cm- 3, and 1.23 mg?cm- 3 and 1.82 mg?cm- 3, respectively. The root length density, root area density, and root biomass density of Populus tomentosa were 1.68 cm2?cm-3, 17.66 cm2?cm-3, and 1.41 mg? cm- 3, respectively. The mixed forest of Populus tomentosa with 10-year-old Pinus tabuliformis had the highest root length density, root area density, and root biomass density in the surface soil layer. In a 1- m deep soil layer, the average root biomass density of Populus tomentosa, Populus tomentosa with 5- year- old Pinus tabuliformis, and Populus tomentosa with 10- year- old Pinus tabuliformis were 0.58 mg ? cm- 3, 0.66 mg ? cm- 3, and 0.82 mg ? cm- 3, respectively. The root biomass density of Populus tomentosa and Pinus tabuliformis mixed forests were higher than that of the pure forest and were found to increase with increased restoration years. The average root length density and root area density of Armeniaca sibirica with Picea asperata and Armeniaca sibirica with Pinus sylvestris mixed forests were observed to be higher than that of Armeniaca sibirica in a 1-m soil layer. From the vertical soil profile, the root length density, root area density, and root biomass density of fine roots in all restoration patterns showed obvious surface aggregation phenomenon. The mixed restoration patterns increased the proportion of fine roots in the surface layer and increased with increased restoration years. The correlation analysis between the root indexes and the soil physiochemical indexes showed that the fine root length density, root area density, and root biomass density were significantly positively correlated with soil total carbon, total nitrogen, water content, and organic carbon. Specific root length and specific root area also had a positive relationship with soil total carbon, soil total nitrogen, and organic carbon.

参考文献

[1] 张毓涛, 胡莎莎, 李吉玫, 等. 新疆 3 种主要森林类型根系生物 量 变 化 特 征 研 究 [J]. 干 旱 区 地 理, 2013, 36(2): 269- 276. [ZHANG Yutao, HU Shasha, LI Jimei, et al. Study on root biomass change characteristics of three main forest types in Xinjiang[J]. Ar⁃ id Land Geography, 2013, 36(2): 269-276. ] [2] WANG C, MA Y, TROQISCH S, et al. Soil respiration is driven by fine root biomass along a forest chronosequence in subtropical Chi⁃ na[J]. Journal of Plant Ecology, 2017, 10(1): 36-46. [3] FU Y M, FENG F J, FAN X X, et al. Seasonal dynamics of fine root respiration in the degraded and successional primary korean pine forests in the Lesser Khingan Mountains of northern China[J]. Ecological Indicators, 2019, 102: 1-9. [4] ZHANG H N, SU P X, LI S J, et al. Response of root traits of Reau⁃ muria soongorica and Salsola passerina to facilitation[J]. Journal of Arid Land, 2014, 6(5): 628-636. [5] 荐圣淇, 赵传燕, 方书敏, 等. 基于地理信息技术油松(Pinus tab⁃ uliformis)根长密度估算及空间分布特征分析[J]. 干旱区地理, 2012, 35(4): 599- 606. [JIAN Shengqi, ZHAO Chuanyan, FANG Shumin, et al. Estimating the root length density of Pinus tabulifor⁃ mis based on image processing technology and analyzing its spa⁃ tial distribution[J]. Arid Land Geography, 2012, 35(4): 599-606. ] [6] KRISTINA K, STEFANIE H, DIETRICH H, et al. Effects of bed⁃ rock type and soil chemistry on the fine roots of European beech: A study on the belowground plasticity of trees[J]. Forest Ecology and Management, 2019, 444(15): 256-268. [7] DING Y, LEPPÄLAMMI-KUJANSUU J, HELMISAARI H-S, et al. Fine root longevity and below- and above ground litter production in a boreal Betula pendula forest[J]. Forest Ecology and Manage⁃ ment, 2019, 431(1): 17-25. [8] MCCOMACK M L, DICKIE I A, EISSENSTAT D M, et al. Rede⁃ fining fine roots improves understanding of below ground contribu⁃ tions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3): 505-523. [9] 李佳梅, 朱启良, 马璟, 等. 华北石质山地麻栎和刺槐混交林浅 层细根特征[J]. 西北林学院学报, 2018. 33(1): 31-42. [LI Jia⁃ mei, ZHU Qiliang, MA Jing, et al. Comparison on fine root traits of Quercus accutissima and Robinia pseudoacacia in lower soil layer in rocky mountainous area of northern China[J]. Journal of North⁃ west Forestry University, 2018. 33(1): 31-42. ] [10] CECCON C, PANZACCHI P, SCANDELLARI F, et al. Spatial and temporal effects of soil temperature and moisture and the relation to fine root density on root and soil respiration in a mature apple orchard[J]. Plant and Soil, 2011, 342(1-2): 195-206. [11] 赵鸿雁, 陈英, 周翼, 等. 甘肃中东部植被生长季 NDVI 时空变 化及其对气候因子的响应[J]. 干旱区地理, 2019, 42(6): 1427- 1435. [ZHAO Hongyan, CHEN Ying, ZHOU Yi, et al. Spatiotem⁃ poral variation of NDVI in vegetation growing season and its respons⁃ es to climatic factors in mid and eastern Gansu Province from 2008 to 2016[J]. Arid Land Geography, 2019, 42(6): 1427-1435. ] [12] 许佳, 祝晓瞳, 苑塏烨. 额河源流采金矿区不同恢复措施对矿区 物种多样性和地上生物量的影响[J]. 干旱区地理, 2019, 42(3): 581-589. [XU Jia, ZHU Xiaotong, YUAN Kaiye. Effects of differ⁃ ent restoration measures on species diversity and aboveground bio⁃ mass of the gold mining area in headwaters of the Ertix River[J]. Arid Land Geography, 2019, 42(3): 581-589. ] [13] FLORA T, SARA M, ANDRAS B, et al. Environmental drivers of the forest regeneration in temperate mixed forests[J]. Forest Ecolo⁃ gy and Management, 2019, 433: 720-728. [14] 冯棋, 杨磊, 王晶, 等. 黄土丘陵区植被恢复的土壤碳水效应研 究 [J]. 生 态 学 报, 2019, 39(18): 6598- 6609. [FENG Qi, YANG Lei, WANG Jing, et al. Response of carbon sequestration and wa⁃ ter conservation in deep soil profiles in loess hilly region[J]. Acta Ecologica Sinica, 2019, 39(18): 6598-6609. ] [15] 韩新生, 许浩, 蔡进军, 等. 宁南黄土丘陵区 3 种典型林分的结 构 与 水 文 影 响 比 较 [J]. 水 土 保 持 学 报, 2018, 32(6): 194- 201. [HAN Xinsheng, XU Hao, CAI Jinjun, et al. Comparison of struc⁃ ture and hydrological influence of three typical stands in loess hilly regions of southern Ningxia[J]. Journal of Soil and Water Con⁃ servation, 2018, 32(6): 194-201. ] [16] 谢育利. 黄土丘陵区油松、沙棘纯林及混交林土壤呼吸特征比 较研究[D]. 北京: 中国科学院大学, 2017. [XIE Yuli. Compara⁃ tive study on soil respiration characteristics of Pinus tabulaeformis and Hippophae rhamnoides plantation and mixed forest in loess hilly region[D]. Beijing: University of Chinese Academy of Scienc⁃ es, 2017. ] [17] 胡婵娟, 傅伯杰, 靳甜甜, 等. 黄土丘陵沟壑区植被恢复对土壤 微生物生物量碳和氮的影响[J]. 应用生态学报, 2009, 20(1): 45- 50. [HU Chanjuan, FU Bojie, JIN Tiantian, et al. Effects of vegetation restoration on soil microbial biomass carbon and nitro⁃ gen in hilly areas of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 45-50. ] [18] 寇萌, 焦菊英, 王巧利, 等. 黄土丘陵沟壑区不同植被带植物群 落 的 细 根 分 布 特 征 [J]. 农 业 机 械 学 报, 2016, 47(2): 161- 171. [KOU Meng, JIAO Juying, WANG Qiaoli, et al. Fine root distribu⁃ tion characteristics of plant community in different vegetation zones in hill- gull region of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 161-171. ] [19] 白世红, 丁新景, 马风云, 等. 黄河三角洲盐碱地人工刺槐混交 林细根分布研究[J]. 中国生态农业学报, 2018, 26(1): 116-124. [BAI Shihong, DING Xinjing, MA Fengyun, et al. Fine root distri⁃ bution in mixed Robinia pseudoacacia plantations in saline soils of the Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 2018, 26 (1): 116-124. ] [20] LEUSCHNER C, HERTEL D, CONERS H, et al. Root competition between beech and oak: A hypothesis[J]. Oecologia (Berlin), 2001, 126(2): 276-284. [21] 钱文丽, 卢元, 王韶仲, 等. 混交对红松人工林细根生物量和空 间分布的影响[J]. 东北林业大学学报, 2016, 44(2): 1-5. [QIAN Wenli, LU Yuan, WANG Shaozhong, et al. Influence of species mixing on fine root biomass and spatial distribution in Pinus ko⁃ raiensis plantation[J]. Journal of Northeast Forestry University, 2016, 44(2): 1-5. ] [22] 林希昊, 王真辉, 陈秋波, 等. 不同树龄橡胶(Hevea brasiliensis)林 细根生物量的垂直分布和年内动态[J]. 生态学报, 2008, 28(9): 4128- 4135. [LIN Xihao, WANG Zhenhui, CHEN Qiubo, et al. Vertical distribution and annual dynamics of fine roots of Hevea brasiliensis at different ages[J]. Acta Ecologica Sinica, 2008, 28(9): 4128-4135. ] [23] 邓强, 李婷, 袁志友, 等. 黄土高原 4 种植被类型的细根生物量 和 年 生 产 量 [J]. 应 用 生 态 学 报, 2014, 25(11): 3091- 3098. [DENG Qiang, LI Ting, YUAN Zhiyou, et al. Fine root biomass and production of four vegetation types in Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3091-3098. ] [24] MARÍA M C, CHRISTOPHER H L. Vertical distribution of fine root biomass of emergent Nothofagus dombeyi and its canopy asso⁃ ciates in a Chilean temperate rainforest[J]. Forest Ecology and Management, 2004, 199(2-3): 177-181. [25] 瞿欢欢, 邓洪平, 梁盛, 等. 毛竹扩张对濒危植物桫椤根系形态 可塑性的影响[J/OL]. 生态学报, 2020(4): 1-9. [QU Huanhuan, DENG Hongping, LIANG Sheng, et al. Effects of Phyllostachys heterocycla expansion on morphological plasticity of endangered plant Alsophila spinulosa root system[J/OL]. Acta Ecologica Sini⁃ ca, 2020, 40(4): 1-9. ] [26] 侯海潮, 丁丽, 许中旗, 等. 燕山北部山地典型造林树种幼树根 系分布特征[J]. 林业资源管理, 2018, 68(4): 10-16. [HOU Hai⁃ chao, DING Li, XU Zhongqi, et al. Root distribution of young trees of typical species in the northern region of Yanshan Mountains[J]. Forest Resources Management, 2018, 68(4): 10-16. ] [27] SCHLOSSBERG M J, KARNOK K J, LANDRY G, et al. Estima⁃ tion of viable root- length density of heat- tolerant Crenshaw and L93 creeping bent grass by an accumulative degree-day model[J]. Journal of the American Society for Horticultural Science, 2002, 127(2): 224-229. [28] 罗达, 史彦江, 宋锋惠, 等. 平欧杂种榛细根空间分布特征[J]. 林 业科学研究, 2019, 32(1): 81-89. [LUO Da, SHI Yanjiang, SONG Fenghui, et al. Spatial distribution characteristics of fine roots in monoculture system of Corylus heterophylla × Corylus avellana[J]. Forest Research, 2019, 32(1): 81-89. [29] 周永姣, 程林, 王满堂, 等. 武夷山不同海拔黄山松细根性状季 节变化[J]. 生态学报, 2019, 39(12): 4530-4539. [ZHOU Yongji⁃ ao, CHENG Lin, YU Mantang, et al. Seasonal changes of fine root traits in Pinus taiwanensis hayata at different altitudes in the Wuyi Mountains[J]. Acta Ecologica Sinica, 2019, 39(12): 4530-4539. ] [30] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A hand⁃ book of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335-380. [31] GU J. Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species[J]. Eu⁃ ropean Journal of Forest Research, 2017, 136(4): 727-738. [32] 黄林, 王峰, 周立江, 等. 不同森林类型根系分布与土壤性质的 关 系 [J]. 生 态 学 报, 2012, 32(19): 6110- 6119. [HUANG Lin, WANG Feng, ZHOU Lijiang, et al. Root distribution in the differ⁃ ent forest types and their relationship to soil properties[J]. Acta Ecologica Sinica, 2012, 32(19): 6110-6119. ] [33] WANG Y, GAO G, WANG N, et al. Effects of morphology and stand structure on root biomass and length differed between ab⁃ sorptive and transport roots in temperate trees[J]. Plant and Soil, 2019, 442(1-2): 355-367. [34] FORRESTER D I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process[J]. Forest Ecology and Management, 2014, 312: 282-292. [35] 郑力文. 林木根系对土壤性质的影响研究[D]. 北京: 北京林业 大学, 2015. [ZHENG Liwen. Effect of root system on soil proper⁃ ties[D]. Beijing: Beijing Forestry University, 2015. ] [36] 李永涛, 王霞, 周健, 等. 基于林龄的黄河三角洲白蜡人工林细 根分布与活力研究[J]. 干旱区资源与环境, 2020, 34(1): 171- 177. [LI Yongtao, WANG Xia, ZHOU Jian, et al. Fine root distri⁃ bution and activity of Fraxinus velutina plantations based on the forest stand age in the Yellow River Delta[J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 171-177. ] [37] HELMISAARI H S, DEROME J, NOJD P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiology, 2007, 27(10): 1493-1504. [38] 李陆生, 赵西宁, 高晓东, 等. 黄土丘陵区不同树龄旱作枣园细 根空间分布特征[J]. 农业工程学报, 2015, 31(20): 140-146. [LI Lusheng, ZHAO Xining, GAO Xiaodong, et al. Influences of stand age on root patterns in a rain- fed jujube (Ziziphus jujube) planta⁃ tion of Loess Plateau in China[J]. Transactions of the Chinese Soci⁃ ety of Agricultural Engineering, 2015, 31(20): 140-146. ] [39] 包青岭, 丁建丽, 王敬哲, 等. 基于随机森林算法的土壤有机质 含量高光谱检测[J]. 干旱区地理, 2019, 42(6): 1404-1414. [BAO Qingling, DING Jianli, WANG Jingzhe, et al. Hyperspectral detec⁃ tion of soil organic matter content based on random forest algo⁃ rithm[J]. Arid Land Geography, 2019, 42(6): 1404-1414. ] [40] 吕朋, 左小安, 孙珊珊, 等. 科尔沁沙地退化植被恢复过程中碳 氮化学计量特征的变化[J]. 干旱区地理, 2019, 42(3): 606-614. [LYU Peng, ZUO Xiaoan, SUN Shanshan, et al. Changes of carbon and nitrogen stoichiometry in the restoration process of degraded vegetation in Horqin Sandy Land[J]. Arid Land Geography, 2019, 42(3): 606-614. ] [41] 满洲, 胡婵娟, 冯德显, 等. 黄土丘陵区白杨纯林群落结构调整 对土壤碳的影响[J]. 生态学杂志, 2018, 37(12): 37- 44. [MAN Zhou, HU Chanjuan, FENG Dexian, et al. Effect of community structure adjustment of pure Populus tomentosa planataion on soil carbon in the semi-arid Loess Plateau of China[J]. Chinese Journal of Ecology, 2018, 37(12): 37-44. ] [42] ZHANG C B, CHEN L H, JIANG J, et al. Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, Chi⁃ na[J]. Journal of Arid Land, 2014, 6(5): 601-611. [43] LEENA F, VATILI Z, MARJO P, et al. Variation in fine root bio⁃ mass along a 1000 km long latitudinal climatic gradient in mixed boreal forests of north-east Europe[J]. Forest Ecology and Manage⁃ ment, 2019, 432: 649-655. [44] 郭京衡, 李尝君, 曾凡江, 等. 2 种荒漠植物根系生物量分布与 土壤水分、养分的关系[J]. 干旱区研究, 2016, 33(1): 166-171. [GUO Jingheng, LI Changjun, ZENG Fanjiang, et al. Relationship between root biomass distribution and soil moisture, nutrient for two desert plant species[J]. Arid Zone Research, 2016, 33(1): 166-171. ] [45] PREGITZER H K S. Temporal and depth- related patterns of fine root dynamics in northern hardwood forests[J]. Journal of Ecology, 1996, 84(2): 167-176. [46] 李吉玫, 张毓涛, 韩燕梁, 等. 降水变化对天山云杉细根分解及 养分释放的影响[J]. 生态环境学报, 2015, 24(9): 33-40. [LI Ji⁃ mei, ZHANG Yutao, HAN Yanliang, et al. Effects of variation of precipitation on the fine root decomposition and related nutrient release in Picea schrenkiana var. Tianshanica[J]. Ecology and En⁃ vironment Sciences, 2015, 24(9): 33-40. ] [47] ZHANG B W, CADOTTE M W, CHEN S P, et al. Plants alter their vertical root distribution rather than biomass allocation in re⁃ sponse to changing precipitation[J]. Ecology, 2019, 100(11): eo2828, doi:10.1002/ecy.2828. [48] BORDRON B, ROBIN A, OLIVEIRA I R, et al. Fertilization in⁃ creases the functional specialization of fine roots in deep soil lay⁃ ers for young Eucalyptus grandis trees[J]. Forest Ecology and Man⁃ agement, 2019, 431: 6-16.
文章导航

/