黄土高原地区极端气候指数时空变化

展开
  • 1 兰州交通大学测绘与地理信息学院,甘肃 兰州 730070; 2 地理国情监测技术应用国家地方 联合工程研究中心,甘肃 兰州 730070; 3 甘肃省地理国情监测工程实验室,甘肃 兰州 730070; 4 兰州市勘察测绘研究院,甘肃 兰州 730030
杨维涛(1994-),男,陕西宝鸡人,硕士研究生,研究方向为资源与环境遥感.E-mail:913117597@qq.com

收稿日期: 2019-09-11

  修回日期: 2020-06-11

  网络出版日期: 2020-11-25

基金资助

国家自然科学基金项目(41361080);兰州交通大学优秀平台支持项目(201806)

Temporal and spatial changes of extreme weather indices in the Loess Plateau

Expand
  • 1 Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2 National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, Gansu, China; 3 Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, Gansu, China; 4 Lanzhou Institute of Surveying and mapping, Lanzhou 730070, Gansu, China

Received date: 2019-09-11

  Revised date: 2020-06-11

  Online published: 2020-11-25

摘要

黄土高原生态环境脆弱,极端气候频发,越来越多的影响到人类的生产生活。通过基于 138 个气象站点观测资料,利用一元线性方程和 Mann-Kendall 法分析了黄土高原地区 27 个极端气 候指数的时空变化,得到以下主要结论:(1)极端气温指数中霜冻日数、冰冻日数、日最低气温的极 高值和冷持续日数在逐渐减少,生长季长度、夏季日数,热夜日数、日最高气温的极高值、暖持续日 数在逐渐增加。(2)极端气温指数中冷昼日数、冷夜日数、日最低气温极低值、日最高气温极高值、 气温日较差在子区域与全区变化趋势存在不同,主要表现在黄土塬区、黄土峁状丘陵区和石质山 地区。(3)极端降水指数变化趋势平缓,与多年均值接近。在空间分布上,除极强降水量、强降水量 和年均雨日降水强度在各子区域上与全区变化趋势一致外,其余指数在各子区域上与全区变化趋 势存在不同,主要表现在黄土塬和黄土梁状丘陵区。(4)多数极端气温指数的突变主要发生在 1980—1985 年和 2010—2015 年;多数极端降水指数的突变主要发生在 1985—1990 年和 2010— 2015 年。

本文引用格式

杨维涛, 孙建国, 康永泰, 马恒利, 徐睿择 . 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020 , 43(6) : 1456 -1466 . DOI: 10.12118/j.issn.1000-6060.2020.06.06

Abstract

Loess Plateau is the central region of Mainland China and its fragile ecological environment and frequent extreme climate greatly impact human production and life. Based on the 138 meteorological site observation data, using the method of monadic linear equation and Mann- Kendall for 27 of the Loess Plateau region’s spatial and temporal variations of extreme climate index not only help promote the Loess Plateau area’s ecological environment protection and soil and water conservation management, but also strongly provide a decision support for regional sustainable development in the Loess Plateau. By studying the trends of extreme climate index and mutation, the following conclusions are generated: (1) The Loess plateau of extreme temperature index of frost days (FD0), ice days (ID0), monthly maximum value of daily minimum temperature (TNx), and cold spell duration indicator (CSDI) are decreasing gradually; Growing season length (GSL), summer days (SU25), tropical nights (TR20), monthly maximum value of daily maximum temperature (TXx), and warm spell duration indicator (WSDI) are increasing continuously, while the rest of the index change vary more gently. In general, the cold index and the warm index of the Loess Plateau’s extreme temperature index are decreasing gradually. (2) There are spatial differences in the extreme temperature indexes. In addition to the indexes consistent with the changes of the whole region, cool days (TX10P), cool nights (TN10P), monthly minimum value of daily maximum temp (TXn), monthly maximum value of daily maximum temp (TXx), and diurnal temperature range (DTR) are different in sub-regions and the whole region, which are mainly manifested in the Loess tableland, hilly Loess, and rocky mountain areas. (3) The variation trend of extreme precipitation index is flat and close to the multi- year average. Simple daily intensity index (SDII) and very wet days (R95p) showed an upward trend, while consecutive dry days (CDD), extremely wet days (R99p) and consecutive wet days (CWD) showed a downward trend. However, the change trend was not obvious on the whole. In terms of spatial distribution, except for wet days (R99p), very wet days (R95p), simple daily intensity index (SDII), strong precipitation, and annual average daily precipitation intensity are consistent with the variation trend of the whole region in each sub-region. Other indexes are different from the variation trend of the whole region in each sub- region and are mainly manifested in Loess tableland and girder hills. (4) Most of the abrupt transitions of extreme temperature indexes occurred in 1980—1985 and 2010—2015, while most of the abrupt changes in the extreme precipitation index occurred from 1985 to 1990 and from 2010 to 2015. Comparing the abrupt transition nodes of the two, the abrupt transition time node of the extreme temperature index is relatively earlier than that of the extreme precipitation index.

参考文献

[1] MEEHL G A, STOCKER T F, COLLINS W D, et al. Global cli⁃ mate projections climate change 2007[C]// The physical science basisof the Intergovernmental Panel on Climate Change. 2007: 710-719. [2] LIAO H, CHANG W. Integrated assessment of air quality and cli⁃ mate change for policy- making: Highlights of IPCC AR5 and re⁃ search challenges[J]. National Science Review, 2014, 1(2): 176. [3] 王晓利. 中国沿海极端气候变化及其对 NDVI 的影响特征研究 [D]. 烟 台: 中 国 科 学 院 烟 台 海 岸 带 研 究 所, 2017. [WANG Xiaoli. Variation of extreme climate and its impact on NDVI in the coastal area of China[D]. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2017. ] [4] BROWN S J, CEASER J, FERRO C A T. Global changes in ex⁃ treme daily temperature since 1950[J]. Journal of Geophysical Re⁃ search Atmospheres, 2008, 113(D5): D05115, doi:10.1029/2006JD 008091, 2008. [5] KEGGENHOFF I, ELIZBARASHILI M, AMIRI- FARAHANI A, et al. Trends in daily temperature and precipitation extremes over Georgia, 1971—2010[J]. Weather & Climate Extremes, 2014, 4: 75-85. [6] 春兰, 秦福莹, 宝鲁, 等. 近 55 a 内蒙古极端降水指数时空变化 特 征 [J]. 干 旱 区 研 究, 2019, 36(4): 963- 972. [CHUN Lan, QIN Fuying, BAO Lu, et al. Spatiotemporal variation of extreme precip⁃ itation indicesin Inner Mongolia in recent 55 years[J]. Arid Zone Research, 2019, 36(4): 963-972. ] [7] SKANSI M D LM, BRUNET M, SIGRTO J, et al. Warming and wetting signals emerging from analysis of changes in climate ex⁃ treme indices over South America[J]. Global & Planetary Change, 2013, 100(1): 295-307. [8] LIMAMI P D, SANTO F E, RAMOS A M, et al. Recent changes in daily precipitation and surface air temperature extremes in main⁃ land Portugal, in the period 1941—2007[J]. Atmospheric Re⁃ search, 2013, 127(6): 195-209. [9] CHOI G Y, COLLINS D, REN G Y, et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacif⁃ ic network region, 1955—2007[C]//International Training Work⁃ shop on Cas-twas-wmo Forum. 2009: 1906-1925. [10] 任国玉, 封国林, 严中伟. 中国极端气候变化观测研究回顾与展 望 [J]. 气 候 与 环 境 研 究, 2010, 15(4): 337- 353. [REN Guoyu, FENG Guolin, YAN Zhongwei. Progresses in observation studies of climate extremes and changes in mainland China[J]. Climatic Environment Research, 2010, 15(4): 337-353. ] [11] 翟盘茂, 任福民. 中国近四十年最高最低温度变化[J]. 气象学 报, 1997, 55(4): 418-429. [ZHAI Panmao, REN Fumin. On chang⁃ es of China’s maximum and minimum temperatures in the recent 40 years[J]. Acta Meteor Sinica, 2997, 55(4): 418-429. ] [12] 周玉科. 1960—2012 年青藏高原极端气候时空动态与变异研 究[J]. 资源与生态学报, 10(4): 397-414. [ZHOU Yuke. Charac⁃ terizing the spatio-temporal dynamics and variability in climate ex⁃ tremes over the Tibetan Plateau during 1960—2012[J]. Journal of Resources and Ecology, 10(4): 397-414. ] [13] 闫慧敏, 陈伟娜, 杨方兴, 等. 过去 50 年内蒙古极端气候事件时 空 格 局 特 征 [J]. 地 理 研 究, 2014, 33(1): 13- 22. [YAN Huimin, CHEN Weina, YANG Fangxing, et al. The spatial and temporal analysis of extreme climatic events in Inner Mongolia during the past 50 years[J]. Geographical Research, 2014, 33(1): 13-22. ] [14] 杨方兴. 内蒙古地区极端气候事件时空变化及其与 NDVI 的相 关性[D]. 西安: 长安大学, 2012. [YANG Fangxing. Trends of ex⁃ treme daily precipitation and temperature and the correlation with NDVI in Inner Mongolia[D]. Xi’an: Chang’an University, 2012. ] [15] 崔凤琪, 唐海萍, 张钦, 等. 1960—2017 年呼伦贝尔草原极端气 候事件时空变化[J]. 干旱区研究, 2018, 35(6): 1382-1391. [CUI Fengqi, TANG Haiping, ZHANG Qin, et al. Spatiotemporal varia⁃ tion of extreme climatic events in the Hulunbuir grasslands during the period of 1960—2017[J]. Arid Zone Research, 2018, 35(6): 1382-1391. ] [16] 薛海丽, 张钦, 唐海萍. 近 60 a 内蒙古不同草原类型区极端气温 和 干 旱 事 件 特 征 分 析 [J]. 干 旱 区 地 理, 2018, 41(4): 701- 711. [XUE Haili, ZHANG Qin, TANG Haiping. Extreme temperature and drought events in four different grassland areas of Inner Mon⁃ golia in recent 60 years[J]. Arid Land Geography, 2020, 41(4): 701-711. ] [17] 黄浩, 张勃, 黄涛, 等. 近 30a 甘肃省河东地区极端气温指数时 空变化特征及趋势预测[J]. 干旱区地理, 2020, 43(2): 319-328. [HUANG Hao, ZHANG Bo, HUANG Tao, et al. Quantifying and predicting spatial and temporal variations in extreme temperatures since 1990 in Gansu Province, China [J]. Arid Land Geography, 2020, 43(2): 319-328. ] [18] 格根巴图, 魏巍, 张晓, 等. 柴达木盆地极端气候时空趋势及周 期 特 征 [J]. 干 旱 区 研 究, 2020, 37(3): 304- 313. [GEGEN Batu, WEI wei, ZHANG Xiao, et al. Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China, during 1960—2014[J]. Arid Zone Research, 2020, 37(3): 304-313. ] [19] 赵安周, 刘宪锋, 朱秀芳, 等. 1965—2013 年黄土高原地区极端 气温趋势变化及空间差异[J]. 地理研究, 2016, 35(4): 639-652. [ZHAO Anzhou, LIU Xianfeng, ZHU Xiufang, et al. Trend varia⁃ tions and spatial difference of extreme air temperature events in the Loess Plateau from 1965 to 2013[J]. Geographical Research, 2016, 35(4): 639-652. ] [20] SUN W, MU X, SONG X, et al. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960—2013 under global warming[J]. Atmospheric Research, 2016, 168: 33-48. [21] 杨勤科. 黄土高原地区地理分区图(2000 年)[EB/OL]. 地球系统 科 学 数 据 共 享 平 台 - 黄 土 高 原 科 学 数 据 共 享 平 台. 2013. [YANG Qinke. Graphs of geographical division on the Loess Pla⁃ teau (2000) [EB/OL]. Data Sharing Infrastructure of Earth System Science-Data Sharing Infrastructure of Loess Plateau, 2013. ] [22] 宋超. 河北大海陀自然保护区山地草甸植被变化及影响因素研 究 [D]. 北 京: 北 京 林 业 大 学, 2016. [SONG Chao. Study on the vegetation change and its influencing factors of upland meadow in Dahaituo Nature Reserve[D]. Beijing: Beijing Forestry University, 2016. ] [23] 贺伟, 布仁仓, 熊在平, 等. 1961—2005 年东北地区气温和降水 变 化 趋 势 [J]. 生 态 学 报, 2013, 33(2): 519- 531. [HE Wei, BU Rencang, XIONG Zaiping, et al. Characteristics of temperature and precipitation in northeastern China from 1961 to 2005[J]. Ac⁃ ta Ecological Sinica, 2013, 33(2): 519-531. ]
文章导航

/