秦岭南北潜在蒸发与气温响应关系及其影响因素

展开
  • 1 陕西师范大学,陕西 西安 710119; 2 陕西师范大学地理国家级实验教学示范中心, 陕西 西安 710119; 3 北方民族大学,宁夏 银川 750021
王晓萌(1995-),女,河北邢台人,硕士研究生,研究方向为气候变化与区域灾害研究.E-mail:wangxm110402mm@163.com

收稿日期: 2019-10-11

  修回日期: 2020-06-09

  网络出版日期: 2020-11-25

基金资助

国家自然科学基金项目(41877519,41871187)

Spatiotemporal relationship between evaporation and temperature in the south and north of Qinling Mountains and its influential factors

Expand
  • 1 School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China; 2 National Demonstration Center for Experimental Geography Education, Shaanxi Normal University, Xi’an 710119, Shaanxi, China; 3 North Mizu University, Yinchuan 750021, Ningxia, China

Received date: 2019-10-11

  Revised date: 2020-06-09

  Online published: 2020-11-25

摘要

蒸发是水文循环的重要组成部分,精细化蒸发变化与气象要素的响应关系,对中国重要生 态过渡带水资源、生态恢复重建以及社会经济的可持续发展具有重要意义。基于 1970—2017 年 70 个气象站点观测数据,辅以趋势分析和小波相干方法,对秦岭南北气温和潜在蒸发(ET0 )变化特征 进行分析,探讨气象要素与 ET0 的响应关系。结果表明:以滑动相关方法为基础,无论是滑动窗口 调整,还是去趋势序列,气温与ET0 均呈现正相关关系,说明秦岭南北气温上升,ET0  增加;但是,秦 岭南北气温与ET0  相关关系存在时空差异。以 1993 年为时间节点,前期气温和 ET0 相关性呈现增 加趋势,后期则逐渐减弱;空间上西秦岭地区是气温和 ET0  的弱相关区。在主导因素上,ET0 对太阳 辐射变化更为敏感,风速并非区域 ET0  变化的主导因素,从而导致“蒸发悖论”现象并不突出。多因 素主导 ET0  变化,是秦岭南北 ET0  与气温响应关系存在时空差异的原因。

本文引用格式

王晓萌, 延军平, 李双双, 晏德莉, 万佳 . 秦岭南北潜在蒸发与气温响应关系及其影响因素[J]. 干旱区地理, 2020 , 43(6) : 1435 -1445 . DOI: 10.12118/j.issn.1000-6060.2020.06.04

Abstract

Evaporation (ET0 ) is an important part of the hydrological cycle. A detailed analysis of the relationship between ET0 and meteorological factors is of great significance for water resources, ecological restoration and reconstruction, and sustainable development of social and economic in China’s important ecological transition zone. In this paper, based on the data from 70 meteorological stations in the south and north of Qinling Mountains during 1970—2017, potential evaporation was first calculated using FAO (Food and Agriculture Organization of the United Nations) Penman- Monteith model. Moreover, variation of temperature and ET0 in the south and north of Qinling Mountains is analyzed and the relationship between ET0  and meteorological factors i.e., temperature, wind speed, sunshine duration, relative humidity are investigated to determine which factor primarily influences ET0  using a sliding correlation coefficient and wavelet coherence. The results are as follow: based on the mutual correspondence of trends, there is uncertainty in the response relationship between ET0  and temperature in the south and north of Qinling Mountains. It is not a simple reverse correspondence, that is, the higher the temperature, the more the evaporation. Based on the sliding correlation coefficient, whether we adjusted the size of sliding correlation window or divided the different time periods, there is always a significant positive correlation between ET0  and temperature, implying that the existence of“evaporation paradox”phenomenon in the study region could not be detected. However, there is a spatiotemporal difference in the correlation between the temperature and ET0 in the south and north of Qinling Mountains. In terms of the relationship between temperature and evaporation, 1993 was a turning change point since the correlation in the whole period increased initially and then decreased. In terms of spatial variation, regardless of the sequence (original or detrending) and sliding correlation window (11 a or 21 a), the correlation pattern of temperature and ET0  in the south and north of Qinling Mountains has not changed much, while a weak correlation is observed in the western part of Qinling Mountains. For the influence of meteorological factors change on ET0  change, it is well established that with the observed decreased sunshine duration and wind speed and increased relative humidity, the ET0  has been decreasing over the past 48 a, which confirmed three existing assumptions: (1) the reductions in sunshine duration is the first factor for the decline in ET0  resulting from the evidences in three sub- regions in the south and north of Qinling Mountains, (2) the decreasing wind speed is the second factor for the decline in both northern and south piedmont of Qinling Mountains, and (3) the increasing change in relative humidity exacerbated the decrease of ET0  in Hanjiang River Basin. However, temperature is the last related factor to ET0  in south and north of Qinling Mountains. The interaction of multiple factors may influence the variation of ET0  rate, which is the main reason for the complexity of the‘evaporation paradox’in south and north of Qinling Mountains.

参考文献

[1] CHAHINE M T. The hydrological cycle and its influence on cli⁃ mate[J]. Nature, 1992, 359(6394): 373-380. [2] WANG W, LEE X H, XIAO W, et al. Global lake evaporation ac⁃ celerated by changes in surface energy allocation in a warmer cli⁃ mate[J]. Nature Geoscience, 2018, 11(6): 410-414. [3] GAO Y F, ZHAO C Y, MUHAMMAD W A, et al. Actual evapo⁃ transpiration of subalpine meadows in the Qilian Mountains, north⁃ west China[J]. Journal of Arid Land, 2019, 11(3): 371-384. [4] FAN Z X, THOMAS A. Decadal changes of reference crop evapo⁃ transpiration attribution: Spatial and temporal variability over Chi⁃ na 1960—2011[J]. Journal of Hydrology, 2018, 560: 461-470. [5] WEN J, QIN R M, ZHANG S H, et al. Effects of long-term warm⁃ ing on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China[J]. Journal of Ar⁃ id Land, 2020, 43(2):252-266. [6] XING W, WANG W, SHAO Q, et al. Periodic fluctuation of refer⁃ ence evapotranspiration during the past five decades: Does evapo⁃ ration paradox really exist in China[J]. Scientific Reports, 2016, 6: 39503-39514. [7] WANG K, LIU X, TIAN W, et al. Pan coefficient sensitivity to en⁃ vironment variables across China[J]. Journal of Hydrology, 2019, 572: 582-591. [8] 秦榕, 李林超, 杨霰, 等. 新疆地区蒸发皿蒸发量变化及基于小 波 的 周 期 分 析 [J]. 干 旱 区 地 理, 2018, 41(5): 954- 962. [QIN Rong, LI Linchao, YANG San, et al. Change of pan evaporation in Xinjiang and its periods based on wavelet analysis[J]. Arid Land Geography, 2018, 41(5): 954-962. ] [9] 任修琳, 李宏亮, 张玉虎, 等. 2000—2015 年三江平原主要作物 需水量特征及影响因素分析[J]. 干旱区地理, 2019, 42(4): 854- 866. [REN Xiulin, LI Hongliang, ZHANG Yuhu, et al. Water re⁃ quirement characteristics and influencing factors of main crops in the Sanjiang Plain from 2000 to 2015[J]. Arid Land Geography, 2019, 42(4): 854-866. ] [10] 钟巧, 焦黎, 李稚, 等. 博斯腾湖流域潜在蒸散发时空演变及归 因分析[J]. 干旱区地理, 2019, 42(1): 103-112. [ZHONG Qiao, JI⁃ AO Li, LI Zhi, et al. Spatial and temporal changes of potential evapotranspiration and its attribution in the Bosten Lake Basin[J]. Arid Land Geography, 2019, 42(1): 103-112. ] [11] 刘闻, 曹明明, 邱海军, 等. 渭河流域关中段潜在蒸发量时空变 化特征[J]. 地理科学, 2014, 34(9): 1145-1152. [LIU Wen, CAO Mingming, QIU Haijun, et al. Spatial and temporal change of the potential evapotranspiration in Weihe River Basin: A case study in Guanzhong Area[J]. Scientia Geographica Sinica, 2014, 34(9): 1145-1152. ] [12] RODERICK M L, FARQUHAR G D. The cause of decreased pan evaporation over the past 50 years[J]. Science, 2002, 298(5597): 1410-1411. [13] BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox[J]. Nature, 1998, 396(6706): 30. [14] WANG W, SHAO Q, PENG S, et al. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957—2008 and their spatial and seasonal differences[J]. Water Resources Research, 2012, 48(5): 5530-5556. [15] 蒋冲, 王飞, 刘思洁, 等.“蒸发悖论”在秦岭南北地区的探讨[J]. 生 态 学 报, 2013, 33(3): 844- 855. [JIANG Chong, WANG Fei, LIU Sijie, et al. Evaporation paradox in the northern and southern regions of the Qinling Mountains[J]. Acta Ecologica Sinica, 2013, 33(3): 844-855. ] [16] MACEK U, BEZAK N, ŠRAJ M. Reference evapotranspiration changes in Slovenia, Europe[J]. Agricultural and Forest Meteorolo⁃ gy, 2018, 260: 183-192. [17] VICENTE-SERRANO S M, BIDEGAIN M, TOMAS-BURGUERA M, et al. A comparison of temporal variability of observed and model- based pan evaporation over Uruguay (1973—2014) [J]. In⁃ ternational Journal of Climatology, 2018, 38(1): 337-350. [18] RAYNER D P. Wind run changes: The dominant factor affecting pan evaporation trends in Australia[J]. Journal of Climate, 2007, 20(14): 3379-3394. [19] 李敏敏, 延军平.“蒸发悖论”在北方农牧交错带的探讨[J]. 资源 科 学, 2013, 35(11): 2298- 2307. [LI Minmin, YAN Junping. The evaporation paradox in the farming-pastoral ecotone of northern China [J]. Resources Science, 2013, 35(11): 2298-2307. ] [20] 代海燕, 李丹, 娜日苏, 等. 内蒙古干湿环境演变与地区生态建 设 优 势 气 候 背 景 分 析 [J]. 干 旱 区 地 理, 2019, 42(4): 745- 752. [DAI Haiyan, LI Dan, NA Risu, et al. Dry and wet environment evolution and climatic background analysis of regional ecological construction in Inner Mongolia[J]. Arid Land Geography, 2019, 42 (4): 745-752. ] [21] 马雪宁, 张明军, 王圣杰, 等.“蒸发悖论”在黄河流域的探讨[J]. 地 理 学 报, 2012, 67(5): 645- 656. [MA Xuening, ZHANG Ming⁃ jun, WANG Shengjie, et al. Evaporation paradox in the Yellow River Basin[J]. Acta Geographica Sinica, 2012, 67(5): 645-656. ] [22] LI M, CHU R, SHEN S, et al. Dynamic analysis of pan evaporation variations in the Huai River Basin: A climate transition zone in eastern China[J]. Science of the Total Environment, 2018, 625: 496-509. [23] GAO W, WANG Z, HUANG G. Spatiotemporal variability of actu⁃ al evapotranspiration and the dominant climatic factors in the Pearl River Basin, China[J]. Atmosphere, 2019, 10(6): 340-360. [24] 王婷婷, 孙福宝, 章杰, 等. 基于析因数值实验方法的蒸发皿蒸 发 归 因 研 究 [J]. 地 理 学 报, 2018, 73(11): 2064- 2074. [WANG Tingting, SUN Fubao, ZHANG Jie, et al. A new method to attri⁃ bute changes of pan evaporation: The experimental detrending ap⁃ proach[J]. Acta Geographica Sinica, 2018, 73(11): 2064-2074. ] [25] 李双双, 芦佳玉, 延军平, 等. 1970—2015 年秦岭南北气温时空 变化及其气候分界意义[J]. 地理学报, 2018, 73(1): 13-24. [LI Shuangshuang, LU Jiayu, YAN Junping, et al. Spatiotemporal vari⁃ ability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary[J]. Acta Geographica Sini⁃ ca, 2018, 73(1): 13-24. ] [26] 齐贵增, 白红英, 孟清, 等. 1959—2018 年秦岭南北春季气候时 空变化特征[J]. 干旱区研究, 2019, 36(5): 1079- 1091. [QI Gui zeng, BAI Hongying, MENG Qing, et al. Climate change in the Qinling Mountains in spring during 1959—2018[J]. Arid Zone Re⁃ search, 2019, 36(5): 1079-1091. ] [27] 邓晨晖, 白红英, 高山, 等. 1964—2015 年气候因子对秦岭地区 植物物候的综合影响效应[J]. 地理学报, 2018, 73(5): 917-931. [DENG Chenhui, BAI Hongying, GAO Shan, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964—2015[J]. Acta Geographica Sinica, 2018, 73 (5): 917-931. ] [28] 蒋冲, 穆兴民, 马文勇, 等. 秦岭南北地区绝对湿度的时空变化 及其与潜在蒸发量的关系[J]. 生态学报, 2015, 35(2): 378-388. [JIANG Chong, MU Xingmin, MA Wenyong, et al. Spatial and tem⁃ poral variation of absolute humidity and its relationship with poten⁃ tial evaporation in the northern and southern regions of Qinling Mountains[J]. Acta Ecologica Sinica, 2015, 35(2): 378-388. ] [29] 刘彦随, 王仰麟, 傅伯杰. 刘胤汉的地理学思想与学术贡献[J]. 地理学报, 2007, 62(7): 776-781. [LIU Yansui, WANG Yanglin, FU Bojie. Liu Yinhan’s geography thoughts and the academic contribution[J]. Acta Geographica Sinica, 2007, 62(7): 776- 781. ] [30] 余予, 李俊, 任芝花, 等. 标准序列法在日平均气温缺测数据插 补中的应用[J]. 气象, 2012, 38(9): 1135-1139. [YU Yu, LI Jun, REN Zhihua, et al. Application of standardized method in estimat⁃ ing missing daily mean air temperature[J]. Meteorological Month⁃ ly, 2012, 38(9): 1135-1139. ] [31] 朱国锋, 何元庆, 蒲焘, 等. 1960—2009 年横断山区潜在蒸发量 时 空 变 化 [J]. 地 理 学 报, 2011, 66(7): 905- 916. [ZHU Guofeng, HE Yuanqing, PU Tao, et al. Spatial distribution and temporal trendsin potential evaporation over Hengduan[J]. Acta Geographi⁃ ca Sinica, 2011, 66(7): 905-916. ] [32] PARTAL T. Modelling evapotranspiration using discrete wavelet transform and neural networks[J]. Hydrological Processes: An In⁃ ternational Journal, 2009, 23(25): 3545-3555. [33] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time se⁃ ries[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6): 561-566. [34] YANG S, WANG X L, WILD M. Homogenization and trend analy⁃ sis of the 1958—2016 in situ surface solar radiation records in China[J]. Journal of Climate, 2018, 31(11): 4529-4541. [35] 辛蕊, 段克勤. 2017 年夏季秦岭降水的数值模拟及其空间分布 [J]. 地理学报, 2019, 74(11): 2329-2341. [XIN Rui, DUAN Keq⁃ in. Numerical simulation and spatial distribution of summer pre⁃ cipitation in the Qinling Mountains[J]. Acta Geographica Sinica, 2019, 74(11): 2329-2341. ] [36] WANG K W, LIU X M, LI Y H, et al. A generalized evaporation model for Chinese pans[J]. Journal of Geophysical Research: At⁃ mospheres, 2018, 123(19): 10943-10966. [37] 高瑜莲, 柳锦宝, 柳维扬, 等. 近 14 a 新疆南疆绿洲地区地表蒸 散与干旱的时空变化特征研究[J]. 干旱区地理, 2019, 42(4): 830- 837. [GAO Yulian, LIU Jinbao, LIU Weiyang, et al. Spatio- temporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years[J]. Arid Land Geography, 2019, 42(4): 830-837.]
文章导航

/