基于多光谱和地理加权回归模型的石嘴山城市 土壤有机碳空间分布研究

展开
  • 1 宁夏大学资源环境学院,宁夏 银川 750021; 2 旱区特色资源与环境治理教育部国际合作联合实验室,宁夏 银川 750021
夏子书(1997-),女,新疆哈密人,硕士研究生,研究方向为土壤属性的空间分析.E-mail: xzs0131@163.com

收稿日期: 2019-10-12

  修回日期: 2020-04-10

  网络出版日期: 2020-09-25

基金资助

国家自然科学基金项目(41867003,41761049);宁夏高等学校项目(NGY2017015);宁夏自然科学基金项目(2018AAC03027);宁 夏青年科技人才托举工程项目资助;宁夏重点研发计划重大项目(2018BFG02016);宁夏环境保护科学技术研究项目(2018-07)

Spatial distribution of soil organic carbon in Shizuishan based on multispectral and geographically weighted regression model

Expand
  • 1 College of Resources and Environment, Ningxia University, Yinchuan 750021, Ningxia, China; 2 Arid Area Characteristic Resources and Environmental Governance Department of Education International Cooperation Joint Laboratory, Yinchuan 750021, Ningxia, China

Received date: 2019-10-12

  Revised date: 2020-04-10

  Online published: 2020-09-25

摘要

城市土壤有机碳(SOC)分布受城市建设、工业发展等人为因素的影响表现出明显的空间差 异。为揭示石嘴山市 SOC 受城市化、工业化等人类活动的影响,分别利用普通克里格法(OK)、多元 线性回归克里格法(RK)、遥感反演方法(RS)和遥感-地理加权回归克里格法(RGWRK)预测石嘴 山市 SOC 空间分布。结果表明:石嘴山市 SOC 含量在 1.31 ~ 66.92 g·kg- 1 之间变化,其平均值为 17.61 g·kg-1。石嘴山市不同功能区 SOC 含量存在显著差异(p < 0.05),具体表现为工业区>医疗区> 商业区>道路>住宅区>公园>农田>科教区;SOC 含量变异系数为 66.27%,呈中等程度变异;其最佳 拟合模型为高斯模型,C0(/ C0+C)为 0.02,属于强空间自相关。SOC 与遥感影像波段 DN 值的差值 (B1-B7、B3-B7、B4-B7)和地形因子(高程、坡度、起伏度)之间存在着极显著的相关性(p < 0.01); 通过对 4 种方法的结果进行对比可知以各波段 DN 值差值与地形因子为输入量,利用 RGWRK 预测 的 SOC 精度最高,相比 OK 精度提高了 10.05%,相比 RK 精度提高了 8.79%,相比 RS 精度提高了 8.92%;研究区 SOC 含量呈北高南低的趋势,工业区 SOC 含量是郊区农田 SOC 含量的 1.92 倍,表明 城区 SOC 含量有富集的趋势。

本文引用格式

夏子书, 白一茹, 包维斌, 钟艳霞, 王幼奇 . 基于多光谱和地理加权回归模型的石嘴山城市 土壤有机碳空间分布研究[J]. 干旱区地理, 2020 , 43(5) : 1348 -1357 . DOI: 10.12118/j.issn.1000-6060.2020.05.20

Abstract

The distribution of soil organic carbon (SOC) in urban areas is influenced by human factors such as ur? ban construction and industrialization, and thus shows obvious spatial differences. To reveal the impact of human ac? tivities such as urbanization and industrialization on SOC in Shizuishan City, the spatial distribution of SOC in Shi? zuishan was predicted using ordinary Kriging (OK), multiple linear regression Kriging (RK), remote sensing inver? sion (RS), and remote sensing- geographically weighted regression Kriging (RGWRK). The SOC content changed from 1.31 g/kg to 66.92 g·kg- 1, with an average of 17.61 g·kg- 1. There were significant differences in SOC content among different functional areas in Shizuishan (p < 0.05). Specifically, the performance in decreasing order was, in? dustrial areas, medical areas, commercial areas, roads, residential areas, parks, farmlands, scientific and education? al areas. The coefficient of variation of SOC content was 66.27% and there was moderate variation. The best fitting model was the Gauss model, and C0/(C0 +C) was 0.02, indicatingstrong spatial autocorrelation. There was a signifi? cant correlation (p < 0.01) between SOC and differences of DN values in different bands of RS images (B1-B7, B3- B7, and B4-B7) and topographic factors (elevation, slope, and relief amplitude). Comparing the results of the four methods demonstrated that SOC predicted by RGWRK was the most accurate, being 10.05% higher than that of OK, 8.79% higher than that of RK, and 8.92% higher than that of RS. SOC content in the northern part of Shizuis? han was higher than the southern part. The SOC content in industrial areas was 1.92 times higher than farmlands, in? dicating that the SOC content in the urban area was enriched.

参考文献

[1] 赵明松, 李德成, 张甘霖, 等. 1980-2010 年安徽省土壤有机碳 密度及储量时空变化分析[J]. 地理研究, 2018, 37(11): 84-95. [ZHAO Mingsong, LI Decheng, ZHANG Ganlin, et al. Spatial-tem⁃ poral change of soil organic carbon density and storage in Anhui Province from 1980 to 2010[J]. Geographical Research, 2018, 37 (11): 84-95.] [2] XIE R, WU XIUQIN. Effects of grazing intensity on soil organic carbon of rangelands in Xilin Gol League, Inner Mongolia, China [J]. Acta Geographica Sinica, 2016, 26(11): 1550-1560. [3] 徐丽, 于贵瑞, 何念鹏. 1980s-2010s 中国陆地生态系统土壤碳 储量的变化[J]. 地理学报, 2018, 73(11): 102-119. [XU Li, YU Guirui, HE Nianpeng. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s[J]. Ac⁃ ta Geographica Sinica, 2018, 73(11): 102-119. ] [4] 张晓东, 刘湘南, 赵志鹏, 等. 农牧交错区生态环境质量遥感动 态 监 测 —— 以 宁 夏 盐 池 为 例 [J]. 干 旱 区 地 理, 2017, 40(5): 1070- 1078. [ZHANG Xiaodong, LIU Xiangnan, ZHAO Zhipeng, et al. Dynamic monitoring of ecology and environment in the agro- pastral ecotone based on remote sensing: A case of Yanchi County in Ningxia Hui Autonomous Region[J]. Arid Land Geography, 2017, 40(5): 1070-1078. ] [5] 赵锐锋, 张丽华, 赵海莉. 黑河中游湿地土壤有机碳分布特征及 其 影 响 因 素 [J]. 地 理 科 学, 2013, 33(3): 363- 370. [ZHAO Rui⁃ feng, ZHANG Lihua, ZHAO Haili. Distribution of soil organic car⁃ bon of wetlands in the middle reaches of the Heihe River and its influencing factors[J]. Scientia Geographica Sinica, 2013, 33(3): 363-370. ] [6] 杨爱霞, 丁建丽. 新疆艾比湖湿地土壤有机碳含量的光谱测定 方 法 对 比 [J]. 农 业 工 程 学 报, 2015, 31(18): 162- 168. [YANG Aixia, DING Jianli. Comparative assessment of two methods for es⁃ timation of soil organic carbon content by Vis-NIR spectra in Xin⁃ jiang Ebinur Lake Wetland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 162-168. ] [7] 任广琦, 贾小旭, 贾玉华, 等. 黄土高原南北样带土壤有机碳空 间 变 异 及 其 影 响 因 素 [J]. 干 旱 区 研 究, 2018, 35(3): 524- 531. [REN Guangqi, JIA Xiaoxu, JIA Yuhua, et al. Spatial variation of soil organic carbon content and its driving factors along south- north transect in the Loess Plateau of China[J]. Arid Zone Re⁃ search, 2018, 35(3): 524-531. ] [8] SONG X D, B.D.J., Liu F, et al. Mapping Soil Organic Carbon Con⁃ tent by Geographically Weighted Regression. Geoderma, 2016, 261: 11-22. [9] Ye H, HUANG W, HUANG S, et al Effects of Different Sampling Densities on Geographically Weighted Regression Kriging for Pre⁃ dicting Soil Organic Carbon. Spatial Statistics, 2017, 20: 76-91. [10] 樊新刚, 米文宝, 马振宁, 等. 宁夏石嘴山河滨工业园区表层土 壤 重 金 属 污 染 的 时 空 特 征 [J]. 环 境 科 学, 2013, 34(5): 1887- 1894. [FAN Xingang, MI Wenbao, MA Zhenning, et al. Spatial and temporal characteristics of heavy metal concentration of sur⁃ face soil in hebin industrial park in Shizuishan Northwest China [J]. Environmental Science, 2013, 34(5): 1887-1894.] [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2007, [BAO Shidan. Soil agricultural chemistry analysis[M]. Beijing: China Ag⁃ ricultural Press, 2007. ] [12] 许宝泉, 梁长利, 蔡定建, 等. 祖历河流域自然草地生产力遥感 反演[J]. 干旱区研究, 2014, 31(6): 1147-1152. [XU Baoquan, LI⁃ ANG Changli, CAI Dingjian, et al. Inversion of natural grassland productivity from remote sensor imagery in Zulihe River Basin[J]. Arid Zone Research, 2014, 31(6): 1147-1152. ] [13] 周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反 演及影响因素研究[J]. 土壤学报, 2018, 55(2): 313-324. [ZHOU Qianqian, DING Jianli, TANG Mengying, YANG Bin. Inversion of soil organic matter content in oasis typical of arid area and its in⁃ fluencing factors[J]. Acta Pedologica Sinica, 2018, 55(2): 313- 324. ] [14] 刘焕军, 潘越, 窦欣, 等. 黑土区田块尺度土壤有机质含量遥感 反演模型[J]. 农业工程学报, 2018, 34(1): 127-133. [LIU Huan⁃ jun, PAN Yue, DOU Xin, et al. Soil organic matter content inver⁃ sion model with remote sensing image in field scale of blacksoil Area[J]. Transactions of the Chinese Society of Agricultural Engi⁃ neering, 2018, 34(1): 127-133. ] [15] ZENG C, YANG L, ZHU A X, et al. Mapping soil organic matter concentration at different scales using a mixed geographically weighted regression method. Geoderma, 2016, 281(281): 69-82. [16] 陈实, 高超, 徐斌, 等. 新疆石河子农区土壤含盐量定量反演及 其 空 间 格 局 分 析 [J]. 地 理 研 究, 2014, 33(11): 2135- 2144. [CHEN Shi, GAO Chao, XU Bin, et al. Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang[J]. Geographical Research, 2014, 33(11): 2135-2144. ] [17] 王幼奇, 白一茹, 赵云鹏. 宁夏砂田小尺度土壤性质空间变异特 征 与 肥 力 评 价 [J]. 中 国 农 业 科 学, 2016, 49(23): 4566- 4575. [WANG Youqi, BAI Yiru, ZHAO Yunpeng. Assessment of soil fer⁃ tility and its spatial variability based on small scale in the gravel mulched field of Ningxia[J]. Scientia Agricultura Sinica, 2016, 49 (23): 4566-4575. ] [18] 张小萌, 李艳红, 王盼盼. 乌鲁木齐城市土壤有机碳空间变异研 究[J]. 干旱区资源与环境, 2016, 30(2): 117-121. [ZHANG Xiao⁃ meng, LI Yanhong, WANG Panpan. Analysis of spatial variability of soil organic carbon in Urumqi[J]. Journal of Arid Land Resourc⁃ es and Environment, 2016, 30(2): 117-121. ] [19] 孙艳丽, 马建华, 李灿. 开封市不同功能区城市土壤有机碳含量 与 密 度 分 析 [J]. 地 理 科 学, 2010, 20(1): 124- 128. [SUN Yanli, MA Jianhua, LI Can. Contents and densities of soil organic Ccar⁃ bon in urban soil in different function districts of Kaifeng[J]. Jour⁃ nal of Geographical Sciences, 2010, 20(1): 124-128. ] [20] 何跃, 张甘霖. 城市土壤有机碳和黑碳的含量特征与来源分析 [J]. 土壤通报, 2006, 43(2): 177-182. [HE Yue, ZHANG Ganlin. Concentration and sources of organic Carbon and black carbon of urban soils in Nanjing[J]. Acta Pedologica Sinica, 2006, 43(2): 177-182. ] [21] ZHANG S, HUANG Y, SHEN C, et al. Spatial prediction of soil or⁃ ganic matter using terrain indices and categorical variables as aux⁃ iliary information. geoderma, 2012, 171-172(2): 35-43. [22] JUSTEL A, PEÑA D, ZAMAR R, A multivariate kolmogorov- smirnov test of goodness of fit[J]. Statistics & Probability Letters, 1997, 35(3): 251-259. [23] 刘迁迁, 苏里坦, 刘广明, 等. 伊犁河谷察南灌区土壤盐分空间 变异研究[J]. 干旱区研究, 2017, 34(5): 980-985. [LIU Qianqian, SU Litan, LIU Guangming, et al. Spatial variation of soil salinity in the chanan irrigated area in the ili River Valley[J]. Arid Zone Research, 2017, 34(5): 980-985. ] [24] Cambardella, C.A., T.B. Moorman, J.M. Novak, et al. Field- scale Variability of Soil Properties in Central Iowa Soils. Soil science So⁃ ciety of America Journal, 1994, 58(5): 1501-1511. [25] 王涛, 喻彩丽, 姚娜, 等. MLR 和 PLSR 的沙壤土盐分含量光谱 检 测 对 比 研 究 [J]. 干 旱 区 地 理, 2018, 41(6): 1295- 1302. [WANG Tao, YU Caili, YAO Na, et al. A comparison of the salt content in sandy soil between the MLR model and PLSR model[J]. Arid Land Geography, 2018, 41(6): 1295-1302. ] [26] 张新乐, 窦欣, 谢雅慧, 等. 引入时相信息的耕地土壤有机质遥 感反演模型[J]. 农业工程学报, 2018, 34(4): 143-150. [ZHANG Xinle, DOU Xin, XIE Yahui, et al. Remote sensing inversion mod⁃ el of soil organic matter in farmland by introducing temporal infor⁃ mation[J]. Transactions of the Chinese Society of Agricultural En⁃ gineering, 2018, 34(4): 143-150. ] [27] 王秋兵, 段迎秋, 魏忠义, 等. 沈阳市城市土壤有机碳空间变异 特征研究[J]. 土壤通报, 2009, 40(2): 252-257. [WANG Qiubing, DUAN Yingqiu, WEI Zhongyi, et al. Spatial varibility of urban soil organic carbon in Shenyang City[J]. Acta Pedologica Sinica, 2009, 40(2): 252-257. ] [28] 柳云龙, 章立佳, 施振香, 等. 上海城市样带土壤有机碳空间变 异性研究[J]. 长江流域资源与环境, 2011, 20(12): 1488-1494. [LIU Yunlong, HANG Lijia, SHI Zhenxiang, et al. Research on spatial variability of soil organic carbon content in the urban-tran⁃ sect of Shanghai[J]. Resources and Environment in the Yangtze Basin, 2011, 20(12): 1488-1494.] [29] 章明奎, 周翠. 杭州市城市土壤有机碳的积累和特性[J]. 土壤通 报, 2006, 37(1): 19-21. [ZHANG Mingkui, ZHOU Cui. Character⁃ ization of organic matter accumulated in urban soils in the Hang⁃ zhou City[J]. Acta Pedologica Sinica, 2006, 37(1): 19-21. ] [30] 罗上华, 毛齐正, 马克明. 北京城市绿地表层土壤碳氮分布特征 [J]. 生 态 学 报, 2014, 34(20): 6011- 6019. [LUO Shanghua, MAO Qizheng, MA Keming. Spatial distribution of soil carbon and nitro⁃ gen in urban greenspace of Beijing[J]. Acta Ecologica Sinica, 2014, 34(20): 6011-6019. ] [31] Mishra, U., R. Lal, D.S. Liu, et al. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science So⁃ ciety of America Journal, 2010, 74(3): 906-914. [32] 刘焕军, 张柏, 刘殿伟, 等. 基于反射率模拟模型的黑土有机质 含 量 估 测 [J]. 光 谱 学 与 光 谱 分 析, 2008, 28(12): 2947- 2950. [LIU Huanjun, ZHANG Bai, LIU Dianwei, et al. Black soil organ⁃ ic matter content prediction based on reflectance simulation mod⁃ els[J]. Spectrosocopy and Spectral Analysis, 2008, 28(12): 2947- 2950. ]
文章导航

/