敦煌莫高窟大气可吸入颗粒物的化学元素特征

展开
  • 1 敦煌研究院国家古代壁画与土遗址保护工程技术研究中心,甘肃 敦煌 736200;2 敦煌研究院文物保护技术 服务中心,甘肃 敦煌 736200;3 中国科学院西北生态环境资源研究院,甘肃 兰州 730000;4 中国科学院青 藏高原研究所,北京 100029;5 兰州大学细胞活动与逆境适应教育部重点实验室,甘肃 兰州 730000
徐瑞红(1986-),女,汉族,甘肃敦煌人,工程师,主要从事遗产地环境监测研究.E-mail:lqqyzj@126.com

收稿日期: 2019-09-20

  修回日期: 2020-06-10

  网络出版日期: 2020-09-25

基金资助

国家科技支撑计划项目(2013BAC07B02);国家自然科学基金项目(31560160);甘肃省科技计划项目(18JR3RA004)、中国科学院 STS 项目(29Y829731)、甘肃省文物局课题(201609)共同资助

Chemical elemental characteristics of atmospheric inhalable particulates in Dunhuang Mogao Grottoes

Expand
  • 1 National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites of the Dunhuang Academy, Dunhuang 736200, Gansu, China; 2 Centre for Cultural Heritage Conservation Technology Services of the Dunhuang Academy, Dunhuang 736200, Gansu, China; 3 Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou 730000, Gansu, China; 4 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100029, China; 5 MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2019-09-20

  Revised date: 2020-06-10

  Online published: 2020-09-25

摘要

利用电感耦合等离子体质谱仪测定了敦煌莫高窟洞窟内外大气可吸入颗粒物中 27 种元素 的质量浓度。结果表明:典型地壳元素 Na、Mg、Al、K、Ca、Fe 占测定元素总质量浓度的 96%以上。 通过洞窟内外 PM2.5 与 PM10-2.5 中元素质量浓度对比发现,Li、Na、Mg、K、Ca、Co、Ni、Zn、Sr、Cs、Ba、U 等 元素主要存在于 PM10-2.5 中。沙尘天气时,洞窟外环境中的 Co、Ga、As、Cs、Ba 元素质量浓度降低,表 明沙尘过程对这些元素有稀释作用。富集因子分析显示,洞窟内外可吸入颗粒物中 B、Na、Ca、Mn、 Cu、Zn、As、Sr、Tl、Pb、Bi、U 的 EF 值均大于 10,表明人类活动产生的污染物对以上元素的富集起主 要作用。富含 Ca、Mn、Cu、Zn、As、Pb 等元素的矿物颜料在洞窟壁画制作中被大量使用,其对区域环 境大气可吸入颗粒物微量元素的富集也有一定的贡献作用。游客数量与洞窟内外元素 Bi 浓度存 在较显著的线性关系,表明环境中的 Bi 元素浓度变化受游客活动影响。本研究首次对莫高窟大气 可吸入颗粒物中元素含量进行了监测和分析,研究成果为石窟文物及其赋存环境中可吸入颗粒物 污染的治理及控制提供了科学依据。

本文引用格式

徐瑞红, 武发思, 汪万福, 贺东鹏, 杨小菊, 张国彬, 康世昌, 李潮流 . 敦煌莫高窟大气可吸入颗粒物的化学元素特征[J]. 干旱区地理, 2020 , 43(5) : 1231 -1241 . DOI: 10.12118/j.issn.1000-6060.2020.05.08

Abstract

This study investigates characteristics of atmospheric inhalable particulates in the Dunhuang Mogao Grot? toes, a world cultural heritage site located at the western end of Hexi Corridor that is extremely dry. In this study, an atmospheric particulate sampler (Dichotomous Partisol - Plus Model 2025, Thermo Scientific, USA) was used to col? lect atmospheric particulate matter inside and outside the caves of Dunhuang Mogao Grottoes, and inductively cou? pled plasma mass spectrometry (ICP-MS, X-7, Thermo Elemental, USA) was used to measure the mass concentra? tions of 27 elements. The results showed that the typical crustal elements (Na, Mg, Al, K, Ca, and Fe) accounted for more than 96% of the total mass concentration of the measured elements. The Ca content was the highest at approxi? mately 60%. In sand dust weather conditions, the mass concentrations of Li, Be, Zn, and various other elements in? creased by a factor of fourcompared to sunny weather conditions, whereas the mass concentrations of Co, Ga, As, Cs, and Ba decreased.This indicates that sand dust weather has a greater impact on the concentrations of these ele? ments. Additionally, the concentrations of B, Sc, Ga, As, Cs, Tl, Pb, and various other elements are low in spring but high in winter, which is possibly related to fossil fuel burning in winter in rural areas around the Mogao Grottoes. En? richment factor (EF) analysis showed that the EF concentrations of B, Na, Ca, Mn, Cu, Zn, As, Sr, Tl, Pb, Bi, and U in inhalable particles were all greater than 10. This suggests that pollutants from human activity play a key role in the variation of these elements. The Pb element EF value exceeded 250, and mainsource of Pb and Zn isfossil fuel burning. This is the first study monitoring and analyzing thecontent of various elements in atmospheric inhalable particulate matter in the Dunhuang Mogao Grottoes, and these results provide scientific basis for the future treat? ment and control of inhalable particulate matter pollution at this site and the surrounding environment.

参考文献

[1] 王旭东. 西北地区石窟与土建筑遗址保护研究的现状与任务 [J]. 敦煌研究, 2012, 38(19): 19-20. [WANG Xudong. The condi⁃ tion and tasks about the conservation of Grottoes and earthen ar⁃ chitecture sites at northwest China[J]. Dunhuang Research, 2007, (5): 6-11, 112. ] [2] 汪万福. 敦煌莫高窟风沙危害及防治[M]. 北京: 科学出版社, 2018: 29- 38. [WANG Wanfu. Sand hazards and prevention in Mogao Grottoes, Dunhuang[M]. Beijing: Science Press, 2018: 29- 38. ] [3] 田磊, 张武, 常倬林, 等. 河西走廊干旱区春季沙尘气溶胶于散 射 的 影 响 初 步 研 究 [J]. 干 旱 区 地 理, 2018, 41(5): 923- 929. [TIAN Lei, ZAHGN Wu, CHANG Zhuolin, et al. Influence of spring dust aerosol on radiation over the arid area in Hexi Corridor [J]. Arid Land Geography, 2018, 41(5): 923-929. ] [4] BROUGHTON L. Report of commission on the site for a new Na⁃ tional Gallery[J]. British Sessional Papers, House of Commons, Session, 1875, 2: 24. [5] POTGIETER- VERMAAK S, HOREMANS B, ANAF W, et al. Degradation potential of airborne particulate matter at the Alham⁃ bra monument: A Raman spectroscopic and electron probe X-ray microanalysis study[J]. Raman Spectrosc, 2012, 43: 1570-1577. [6] ANAF W, BENCS L, VAN GRIEKEN R, et al. Indoor particulate matter in four Belgian heritage sites: Case studies on the deposi⁃ tion of dark- colored and hygroscopic particles[J]. Science of the Total Environment, 2015, 506-507: 361-368. [7] 胡塔峰, 曹军骥, 李旭祥, 等. 秦始皇兵马俑博物馆室内含硫颗 粒物的 SEM-EDX 研究[J]. 中国科学院研究生院学报, 2007, 24 (5): 564- 570. [HU Tafeng, CAO Junji, LI Xuxiang, et al. Micro⁃ analyses of S-containing indoor particles in emperor Qin’s terra- cotta warrioes and horses museum with SEM- EDX[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24 (5): 564-570. ] [8] 李华, 胡塔峰, 曹军骥, 等. 秦俑博物馆室内气溶胶的演化特征 及 影 响 因 素 [J]. 科 技 导 报, 2015, 33(6): 46- 53. [LI Hua, HU Tafeng, CAO Junji, et al. Evolution of indoor aerosol in Emperor Qin's Terracotta Museum and its influential factors[J]. Science & Technology Review, 2015, 33(6): 46-53. ] [9] 李华, 胡塔峰, 杜维莎. 秦兵马俑和汉阳陵遗址保存环境之比较 [J]. 文 物 保 护 与 考 古 科 学, 2019, 31(2): 53- 60. [LI Hua, HU Tafeng, DU Weisha. Comparison of site environments of Emperor Qin's Terracotta Warriors and Horses Museum and Han Yangling Museum[J]. Sciences of Conservation and Archaeology, 2019, 31 (2): 53-60. ] [10] 曹军骥, 杨军昌, 胡塔峰, 等. 西汉张安世墓葬 M1 墓室内的大 气 环 境 调 查 [J]. 文 物 保 护 与 考 古 科 学, 2013, 25(2): 69- 76. [CAO Junji, Yang Junchang, HU Tafeng, et al. Investigation on at⁃ mospheric environment in M1 tomb chamber of mausoleum ZHANG An- shi, Han Dynasty[J]. Sciences of Conservation and Archaeology, 2013, 25(2): 69-76. ] [11] 汪万福. 敦煌莫高窟风沙危害与防治研究[D]. 北京; 中国科学 院 研 究 生 院, 2006. [WANG Wanfu. A research on mobile sand threat and its control at Dunhuang Mogao Grottoes [D]. Beijing Graduate Univer sity of Chinese Academy of Sciences, 2006. ] [12] MIKAVAMA A, HOKOI S, OGURA D, et al. The effects of wind⁃ blown sand on the deterioration of mural paintings in cave 285, in Mogao caves, Dunhuang[J]. Journal of Building Physics, 2018, 00 (0): 1-20. [13] 汪万福, 王涛, 张伟民, 等. 敦煌莫高窟风沙危害综合防护体系 设计研究[J]. 干旱区地理, 2005, 28(5): 614-620. [WANG Wan⁃ fu, WANG Tao, ZHANG Weimin, et al. Study on the design of a comprehensive sand drift control system at Mogao Grottoes, Dun⁃ huang[J]. Arid Land Geography, 2005, 28(5): 614-620. ] [14] 徐瑞红, 武发思, 张国彬, 等. 敦煌莫高窟大气颗粒物 PM2.5 和 PM10 浓度的季节变化分析[C]// 海峡两岸气溶胶技术研讨会论 文集, 2015: 400-407. [XU Ruihong, WU Fasi, ZHANG Guobing, et al. Study of seasonal changes in PM2.5 and PM10 concentrations from atmospheric aerosol in Mogao Grottoes, Dunhuang[C]// Cross- strait Workshop for Aerosol Science & Technology, 2015: 400-407. ] [15] 杨小菊, 武发思, 徐瑞红, 等. 莫高窟环境气溶胶中水溶性离子 分析[C] // 海峡两岸气溶胶技术研讨会论文集, 2015: 423-430. [YANG Xiaoju, WU Fasi, XU Ruihong, et al. Study of characre⁃ rization of variation water- soluble ions of dust aerosol in Mogao Grottoes, Dunhuang[C] // Cross- strait Workshop for Aerosol Sci⁃ ence & Technology, 2015: 423-430. ] [16] 武发思, 汪万福, 贺东鹏, 等. 基于 454 测序的莫高窟大气颗粒 物中真菌群落特征分析[C] // 海峡两岸气溶胶技术研讨会论文 集, 2015: 364- 372. [WU Fasi, WANG Wanfu, HE Dongpeng, et al. Analysis of funal community characteristics in atmospheric par⁃ ticulate matter of Mogao Grottoes based on 454 sequencing[C] // Cross- strait Workshop for Aerosol Science & Technology, 2015: 354-372. ] [17] CHRISTIAN B, RUDI V E. Transition metal- catalyzed oxidation of sulfur(IV) oxides, atmospheric- revlevant processes and mecha⁃ nisms[J]. Chemical Reviews, 1995, 95: 119-190. [18] PIPAL A S. Study of mineral aerosols in fine(PM2. 5) and coarse (PM10) atmospheric particles over a World Heritage site at Agra, In⁃ dia[J]. International Journal of Environmental Technology & Man⁃ agement, 2014, 17(6): 538-553. [19] KANAYAMA S, YABUKI S, YANAGISASA F, et al. The chemi⁃ cal and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust(Kosa) [J]. Atmospheric Environment, 2002, 36(33): 5159-5175. [20] WINCHESTER J W, LU Weixiu, REN Lixin, et al. Fine and coarse aerosol composition from a rural area in north China[J]. At⁃ mospheric Environment, 1981, 15(6): 933-937. [21] 张仁健, 王明星, 蒲一芬, 等. 2000 年春季北京特大沙尘暴物理 化 学 特 性 的 分 析 [J]. 气 候 与 环 境 研 究, 2000, 5(3): 259- 266. [ZHANG Renjian, WANG Mingxin, PU Yifen, et al. Analysis on the chemical and physical properties of“2000. 4. 6”super dust storm in Beijing[J]. Climatic and Environmental Research, 2000, 5 (3): 259-266. ] [22] SINGH R, SHARMA B S. Composition, seasonal variation, and sources of PM10 from world heritage site Taj Mahal, Agra[J]. Envi⁃ ronmental Monitoring & Assessment, 2012, 184(10): 5945. [23] 鲁静, 孙俊民, 邵龙义, 等. 燃煤排放可吸入颗粒物(PM10)中重金 属 元 素 分 布 与 富 集 特 征 [J]. 地 球 化 学, 2009, 38(2): 147- 152. [LU Jing, SUN Junmin, SHAO Longyi, et al. Distribution and enrich⁃ ment of heavy metal elements in inhalable particulate(PM10) caused by coal combustion[J]. Geochimica, 2009, 38(2): 147-152. ] [24] LEE S, HAN C, SHIN D, et al. Characteristics of elemental and Pb isotopic compositions in aerosols(PM10- 2. 5) at the Ieodo Ocean Re⁃ search Station in the East China Sea[J]. Environmental Pollution, 2017, 231: 154-164. [25] 刘镜愉. 现代职业病诊疗手册[M]. 北京: 北京医科大学中国协 和医科大学联合出版社, 1997: 38-42, 75-79. [LIU Jingyu. Diag⁃ nosis and therapy handbook[M]. Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1997: 38-42, 75-79. ] [26] 李金香, 邱启鸿, 辛连忠, 等. 北京秋冬季空气严重污染的特征 及成因分析[J]. 中国环境监测, 2007, 23(2): 89-94. [LI Jinxiang, QIU Qihong, XIN Lianzhong, et al. The characteristics and cause analysis of heavy-air-pollution in autumn and winter in Beijing[J]. Environmental Monitoring in China, 2007, 23(2): 89-94. ] [27] 李最雄. 丝绸之路石窟壁画彩塑保护[M]. 北京: 科学出版社, 2005: 27-48. [LI Zuixiong. Conservation of the wall paintings and colored statues of the grottoes on the silk road[M]. Beijing: Science Press, 2005: 27-48. ] [28] 江涛宏. 打造铋王国[J]. 中国有色金属, 2014, (15): 39-43. [JI⁃ ANG Taohong. Bismuth kingdom[J]. China Nonferrous Metals, 2014, (15): 39-43. ] [29] ZOLLER W H, GLADNEY E S, and DUCE R A. Atmospheri con⁃ centrations and sources of trace metals at the South Pole. [J]. Sci⁃ ence, 1974, 183(4121): 198–200. [30] 唐孝炎, 张远航, 邵敏. 大气环境化学(第二版)[M]. 北京: 高等教 育 出 版 社, 2006. [TANG Xiaoyan, ZHANG Yuanhang, SHAO Min. Atmospheric environmental chemistry[M]. Beijing: Higher Education Press, 2006: 07-209. ] [31] 中国环境监测总站主编. 中国土壤元素背景值[M]. 北京: 中国 环境科学出版社, 1990. [China National Environmental Monitor⁃ ing Centre. Background value of soil elements in China[M]. Bei⁃ jing: China Environmental Science Press, 1990: 29-483. ] [32] 王冠, 夏敦胜, 陈发虎, 等. 兰州市街道尘埃的元素空间变化特 征 研 究 [J]. 干 旱 区 资 源 与 环 境, 2008, 22(6): 13- 20. [WANG Guan, XIA Dunsheng, CHEN Fahu, et al. Spatial variation charac⁃ teristics of elements of street dust in Lanzhou[J]. Journal of Arid Land Resources and Environment, 2008, 22(6): 13-20. ] [33] 杨丽萍, 陈发虎. 兰州市大气降尘污染物来源研究[J]. 环境科学 学 报, 2002, 22(4): 499- 502. [YANG Liping, CHEN Fahu. Study on the source apportionment of atmospheric dust pollutants in Lan⁃ zhou[J]. Acta Scientiae Circumstantiae, 2002, 22(4): 499-502. ] [34] RAMÍREZ O, SÁNCHEZ A D L C, AMATO F, et al. Chemical composition and source apportionment of PM10 at an urban back⁃ ground site in a high-altitude Latin American megacity(Bogota, Co⁃ lombia)[J]. Environmental Pollution, 2018, 233: 142-155. [35] CHENG X, HUANG Y, ZHANG S P, et al. Characteristics, Sourc⁃ es, and health risk assessment of trace elements in PM10 at an ur⁃ ban site in Chengdu, Southwest China[J]. Aerosol & Air Quality Research, 2018, 18(2): 357-370. [36] 徐映如, 王丹侠, 张建文. PM10 和 PM2. 5 危害、治理及标准体系的 概况[J]. 职业与健康, 2013, 29(1): 117-119. [XU Yingru, WANG Danxia, ZHANG Jianwen. General situation for the hazards, con⁃ trol and evaluation standard system of PM10 and PM2. 5[J]. Occupa⁃ tion and Health, 2013, 29(1): 117-119. ] [37] 刘爱明, 杨柳. 大气重金属离子的来源分析和毒性效应[J]. 环境 与 健 康 杂 志, 2011, 28(9): 839- 842. [LIU Aiming, YANG Liu. Source and toxic effects of heavy metal ions in atmosphere[J]. Jour⁃ nal of Environment and Health, 2011, 28(9): 839-842. ] [38] MEGIDO L, SUÁREZ- PEÑA B, NEGRAL L, et al. Suburban air quality: Human health hazard assessment of potentially toxic ele⁃ ments in PM10[J]. Chemosphere, 2017, 177: 284-291.
文章导航

/