生物与土壤

古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度

展开
  • 1 中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011;
    2 新疆阿克苏农田生态系统国家野外科学观测研究站,新疆 阿克苏 843000;
    3 中国科学院新疆生态与地理研究所莫索湾沙漠研究站,新疆 石河子 832000;
    4 中国科学院新疆生态与地理研究所塔克拉玛干沙漠研究站,新疆 库尔勒 841000;
    5 中国科学院大学,北京 100049
郑博文(1995–),男,河南省郑州市人,在读硕士研究生,主要从事恢复生态学相关研究. E-mail:zhengbw1025@163.com

收稿日期: 2019-04-01

  修回日期: 2019-07-21

  网络出版日期: 2020-11-18

基金资助

国家重点研发计划重点专项课题(2016YFC0501401); 国家自然科学基金项目(41671032); 新疆水利科技项目专项经费项目(YF2020-08); 国家重点基础研究发展计划项目(2013CB429902); 中国科学院战略先导科技专项“美丽中国生态文明建设科技工程”(XDA23060203)资助

Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert

Expand
  • 1 State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,Xinjiang,China;
    2 Aksu National Station of Observation and Research for Oasis Agro-ecosystem,Aksu 843017,Xinjiang,China;
    3 Mosuowan Desert Research Station,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Shihezi 832000,Xinjiang,China;
    4 Taklimakan Desert Research Station,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Korla 841000,Xinjiang,China;
    5 University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2019-04-01

  Revised date: 2019-07-21

  Online published: 2020-11-18

摘要

为确定古尔班通古特沙漠南缘地下水深埋区毛管上升水的最大上升高度,对划分固沙植物水分来源提供理论依据,于2016年3月~2018年11月,采用中子仪法对试验地0~10 m土层土壤含水量进行观测,分析沙丘不同坡位土壤含水量的季节变化情况,并利用最大分子持水量与土壤含水量曲线交会法确定试验地毛管水的最大上升高度。结果表明:沙丘不同坡位0~130 cm土层的土壤含水量受外界气象因素影响较大,随季节变化规律明显;130 cm土层以下至570~760 cm土层为土壤含水量较为稳定的干沙层;而570~760 cm以下土层的土壤含水量主要受地下水水位波动和毛管上升水的影响,其含水量变化上界可看作是毛管水的最大上升高度。试验地的最大分子持水量为0.026 1 cm3·cm-3,且沙丘不同坡位毛管水的最大上升高度分布在250~290 cm之间。

本文引用格式

郑博文, 胡顺军, 周智彬, 王泽锋, 李传金 . 古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度[J]. 干旱区地理, 2020 , 43(4) : 1059 -1066 . DOI: 10.12118/j.issn.1000-6060.2020.04.21

Abstract

Water is the restraining factor of vegetation restoration and sand management and the key factor of the ecological environment in areas of desertification. Capillary rising water is one of the primary sources of water for plants. If capillary rising water can reach the active layer of a psammophyte root system and put the plants in hydraulic contact with groundwater,it can provide favorable conditions for the psammous plants to utilize the groundwater. The aims of this paper were to determine the maximum height of capillary rising water in the area of a deep groundwater table in the southern edge of the Gurbantunggut Desert,Xinjiang,China and provide a theoretical basis for the division of the water sources of sand-fixing plants. Three soil moisture monitoring points located at the foot of the west slope,the foot of the east slope,and the flat land on the east side of a dune (i.e.,the lowland between two dunes) were arranged along the cross-section of a fixed dune in the area of a deep groundwater table at the southern edge of the Gurbantunggut Desert. A neutron soil moisture probe was used to observe the soil moisture in the 0-10-m soil profile and to analyze the soil moisture changes of the different slopes of variation over the seasons from March 2016 to November 2018. Then,the pressure membrane meter method was used to determine the soil moisture characteristic curve using the soil samples of the soil moisture monitoring points. Additionally,a method of intersection between the largest molecular moisture holding capacity and soil water content curve was used to determine the maximum height of the capillary rising water at the test site. The results showed that the soil water content of the 0-130-cm soil layer at different slopes of the dune was greatly affected by external meteorological factors and that the law of seasonal change was obvious. The soil layer from 130 to 570-760 cm was a dry sand layer with a stable soil moisture content. The soil water content in the soil layer below 570-760 cm was primarily affected by the fluctuation of the groundwater table and capillary rising water,and the upper boundary of its water content change could be regarded as the maximum height of the capillary rising water. Moreover,the maximum molecular moisture holding capacity of the test site was 0.026 1 cm3·cm-3,and the maximum height of the capillary water on different slopes of the dune was distributed from 250 to 290 cm. Finally,according to the root distribution characteristics of the constructive species at the test site,this paper preliminarily assumed that such species,e.g.,Haloxylon ammodendron and Haloxylon persicum,can utilize groundwater through capillary rising water.

参考文献

[1] 董光荣. 中国沙漠形成演化气候变化与沙漠化研究[M]. 北京:海洋出版社,2002:560–568.
[DONG Guangrong.Study on climate change and desertification of desert formation and evolution in China[M]. Beijing:Ocean Press,2002:560–568.]
[2] 熊顺贵. 基础土壤学[M]. 北京:中国农业大学出版社,2001:125–128.
[XIONG Shungui.Basic soil science[M]. Beijing:China Agricultural University Press,2001:125–128.]
[3] 张明炷,黎庆淮,石秀兰. 土壤学与农作学[M]. 北京:中国水利水电出版社,1994:47–48.
[ZHANG Mingzhu,LI Qinghuai,SHI Xiulan.Soil science and agronomy[M]. Beijing:China Water and Power Press,1994:47–48.]
[4] 吴启堂. 环境土壤学[M]. 北京:中国农业出版社,2015:98–99.
[WU Qitang.Environmental of soil science[M]. Beijing:China Agriculture Press,2015:98–99.]
[5] 樊自立,陈亚宁,李和平,等. 中国西北干旱区生态地下水埋深适宜深度的确定[J]. 干旱区资源与环境,2008,22(2):1–5.
[FAN Zili,CHEN Yaning,LI Heping,et al.Determination of suitable ecological groundwater depth in arid areas in northwest part of China[J]. Journal of Arid Land Resources and Environment,2008,22(2):1–5.]
[6] 刘孝义. 土壤物理及土壤改良研究法[M]. 上海:上海科学技术出版社,1982:65.
[LIU Xiaoyi.Soil physics and soil improvement[M]. Shanghai:Shanghai Scientific and Technical Publishers,1982:65. ]
[7] 谷端伟. 公路土工试验教程[M]. 北京:中国标准出版社,1999:57.
[GU Duanwei.Highway geotechnical test course[M]. Beijing:Standards Press of China,1999:57.]
[8] 白宪臣. 土工试验教程[M]. 开封:河南大学出版社,2008:130.
[BAI Xianchen.Geotechnical experiment course[M]. Kaifeng:Henan University Press,2008:130.]
[9] 项伟,聂良佐. 土工试验状态控制方法论[M]. 北京:地质出版社,2010:186.
[XIANG Wei,NIE Liangzuo.Methodology of geotechnical experiment state[M]. Beijing:Geological Publishing House,2010:186.]
[10] 依艳丽. 土壤物理研究法[M]. 北京:北京大学出版社,2009:117.
[YI Yanli.Methods of soil physics[M]. Beijing:Peking University Press,2009:117. ]
[11] 周晓倩,所振伟,张彦峰. 毛细管水上升高度试验测定土的水理性能研究[J]. 技术与市场,2012,19(4):148–148.
[ZHOU Xiaoqian,SUO Zhenwei,ZHANG Yanfeng.Determination of water energy of soil by capillary water elevation test[J]. Technology and Market,2012,19(4):148–148.]
[12] 姜彬,韩洪德. 测定毛细管水强烈上升高度方法应用实例[J]. 煤炭工程,2007,(10):59–60.
[JIANG Bin,HAN Hongde.Application example of the method for determining the strong rise height of capillary water[J]. Coal Engineering,2007,(10):59–60.]
[13] 郭超英,凌浩美,段鸿海. 岩土工程勘察[M]. 北京:地质出版社,2007:100.
[GUO Chaoying,LING Haomei,DUAN Honghai.Geotechnical investigation[M]. Beijing: Geological Publishing House,2007:100.]
[14] 唐益群,杨坪,王建秀,等. 工程地下水[M]. 上海:同济大学出版社,2011:40.
[TANG Yiqun,YANG Ping,WANG Jianxiu,et al.Engineering ground water[M]. Shanghai:Tongji University Press,2011:40.]
[15] 贾大林,付正泉. 利用放射性131I研究松沙土不同地下水埋深毛管水运行及土体积盐的规律[J]. 灌溉排水,1983,2(3):29–47.
[JIA Dalin,FU Zhengquan.Study of the regularities of capillary water movement and soil salt accumulation in different groundwater depth of loose sand by using radioactive 131I[J].Irrigation and Drainage,1983,2(3):29–47.]
[16] 魏进. 新疆风积沙加固技术与盐胀规律研究[D]. 西安:长安大学,2003.
[WEI Jin.Study on eolian sand consolidation technology and salt swelling law in Xinjiang[D]. Xi’an:Chang’an University,2003.]
[17] 陈发明. 风积沙在盐渍土地区路用性能的研究及其应用[D]. 武汉:武汉理工大学,2008.
[CHEN Faming.Study and application of eolian sand on road performance in saline soil[D]. Wuhan:Wuhan University of Technology,2008.]
[18] 高玉生,程汝恩,李英海,等. 中国沙漠风积沙工程性质研究及工程应用[M]. 北京:中国水利水电出版社,2013:160–161.
[GAO Yusheng,CHENG Ruen,LI Yinghai,et al.Engineering properties and application of aeolian sand in Chinese desert[M]. Beijing:China Water and Power Press,2013:160–161.]
[19] 阚常庆. 保水剂对沙质土毛管水上升特性影响[D]. 邯郸:河北工程大学,2013.
[KAN Changqing.The effects of water-retaining agent on the characteristic of capillary water rising in sandy soil[D]. Handan:Hebei University of Engineering,2013.]
[20] 栗现文,周金龙,赵玉杰,等. 高矿化度对砂性土毛管水上升影响[J]. 农业工程学报,2011,27(8):84–89.
[LI Xianwen,ZHOU Jinlong,ZHAO Yujie,et al.Effects of high-TDS on capillary rise of phreatic water in sand soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(8):84–89.]
[21] 董荣泽,于明英,邱照宁,等. 沙土上升毛管水运动特性研究[J],节水灌溉,2018:19–25.
[DONG Rongze,YU Mingying,QIU Zhaoning,et al.A study on capillary water movement characteristics in sandy soil[J]. Water Saving Irrigation,2018:19–25.]
[22] 朱海,胡顺军,陈永宝. 古尔班通古特沙漠南缘固定沙丘土壤水分时空变化特征[J]. 土壤学报,2016,53(1):117–126.
[ZHU Hai,HU Shunjun,CHEN Yongbao.Spatio-temporal variation of soil moisture in fixed dunes at the southern edge of Gurbantunggut Desert[J]. Acta Pedologica Sinica,2016,53(1):117–126.]
[23] 胡顺军,陈永宝,朱海. 古尔班通古特沙漠南缘融雪水土壤入渗量[J]. 应用生态学报,2015,26(4):1007–1015.
[HU Shunjun,CHEN Yongbao,ZHU Hai.Soil infiltration of snowmelt water in the southern Gurbantunggut Desert,Xinjiang,China[J]. Chinese Journal of Applied Ecology,2015,26(4):1007–1015.]
[24] 蒋进,王雪芹,雷加强. 古尔班通古特沙漠工程防护体系内土壤水分变化规律[J]. 水土保持学报,2003,17(3):74–77.
[JIANG Jin,WANG Xueqin,LEI Jiaqiang.Soil moisture distribution in straw barrier system in Gurbantunggut Desert of Xinjiang,China[J]. Journal of Soil and Water Conservation,2003,17(3):74–77.]
[25] 石亚飞,张志山,黄磊,等. 古尔班通古特沙漠半固定沙丘植物群落物种组成和种群结构[J]. 应用生态学报,2016,27(4):1024–1030.
[SHI Yafei,ZHANG Zhishan,HUANG Lei,et al.Species composition and population structure of plant communities on semi-fixed dunes of the Gurbantongut Desert,China[J].Chinese Journal of Applied Ecology,2016,27(4):1024–1030.]
[26] 段呈,吴玲,王绍明,等. 近30年古尔班通古特沙漠短命植物的时空格局[J]. 生态学报,2017,37(8):2642–2652.
[DUAN Chen,WU Ling,WANG Shaoming,et al.Analysis of spatio-temporal patterns of ephemeral plants in the Gurbantunggut Desert over the last 30 years[J]. Acta Ecologica Sinica,2017,37(8):2642–2652.]
[27] 罗宁,刘尊驰,于航,等. 古尔班通古特沙漠南部植物多样性的区域差异[J]. 生态学报,2016,36(12):3572–3581.
[LUO Ning,LIU Zunchi,YU Hang,et al.Regional differences in plant diversity in the southern Gurbantonggut desert[J]. Acta Ecologica Sinica,2016,36(12):3572–3581. ]
[28] 程东娟,张亚丽. 土壤物理实验指导[M]. 北京:中国水利水电出版社,2012:94–96.
[CHEN Dongjuan,ZHANG Yali.Experiment instruction of soil physics[M]. Beijing:China Water and Power Press,2012:94–96. ]
[29] 周宏飞,肖祖炎,姚海娇,等. 古尔班通古特沙漠树枝状沙丘土壤水分时空变异特征[J]. 水科学进展,2013,24(6):771–777.
[ZHOU Hongfei,XIAO Zhuyan,YAO Haijiao,et al.Temporal and spatial variation of soil moisture in dendritic sand dune over Gurbantunggut Desert in certain Eurasia[J]. Advances in Water Science,2013,24(6):771–777.]
[30] 秦艳芳,陈曦,周可法,等. 古尔班通古特沙漠春季土壤含水量空间格局[J]. 干旱区地理,2013,36(6):1041–1048.
[QIN Yanfang,CHEN Xi,ZHOU Kefa,et al.Spatial pattern of soil water content in spring of the Gurbantunggut Desert[J]. Arid Land Geography,2013,36(6):1041–1048.]
[31] 邵明安,王全九,黄明斌. 土壤物理学[M]. 北京:高等教育出版社,2006:71.
[SHAO Mingan,WANG Quanjiu,HUANG Mingbin.Soil physics[M]. Beijing:Higher Education Press,2006:71.]
[32] GENUTHCEN Van,Martinus T H.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892–898.
[33] 严恺. 水利词典[M]. 上海:上海辞书出版社,1994:371.
[YAN Kai.Water conservancy dictionary[M]. Shanghai:Shanghai Cishu Press,1994:371.]
[34] 沈冰,黄红虎. 水文学原理[M]. 北京:中国水利水电出版社,2015:43.
[SHEN Bing,HUANG Honghu.Principles of hydrology[M]. Beijing:China Water & Power Press,2015:43.]
[35] 芮孝芳. 产汇流理论[M]. 北京:水利电力出版社,1995:4.
[RUI Xiaofang.Theory of runoff and confluence[M]. Beijing:Water Resources and Hydropower Press,1995:4.]
[36] 王锡赞. 农田水利学[M]. 北京:水利电力出版社,1992:10.
[WANG Xizan.Farmland hydrology[M]. Beijing:Water Resources and Hydropower Press,1992:10. ]
[37] 关连珠. 普通土壤学[M]. 北京:中国农业大学出版社,2007:87.
[GUAN Lianzhu.General soil science[M]. Beijing:China Agricultural University Press,2007:87.]
[38] 龚振平. 土壤学与农作学[M]. 北京:中国水利水电出版社,2009:68.
[GONG Zhenping.Soil science and agronomy[M]. Beijing:China Water and Power Press,2009:68.]
[39] 谈云志,孔令伟,郭爱国,等. 压实红黏土水分传输的毛细效应与数值模拟[J]. 岩土力学,2010,31(7):2289–2294.
[TAN Yunzhi,KONG Lingwei,GUO Aiguo,et al.Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. Rock and Soil Mechanics,2010,31(7):2289–2294.]
[40] 李自祥,杨成斌,杨阳. 盐渍土中毛管水上升高度研究[J]. 安徽建筑,2012,19(3):109–110.
[LI Zixiang,YANG Chengbin,YANG Yang.Research of capillary water height in saline soil[J]. Anhui Architecture,2012,19(3):109–110. ]
[41] 史文娟,沈冰,汪志荣,等. 层状土壤毛管水最大上升高度分析[J]. 干旱地区农业研究,2007,25(1):94–97.
[SHI Wenjuan,SHEN Bing,WANG Zhirong,et al.Maximum height of upward capillary water movement in layered soil[J]. Agricultural Research in the Arid Areas,2007,25(1):94–97.]
[42] 徐贵青. 三种荒漠灌木根系分布特征及水分利用[D]. 北京:中国科学院研究生院,2008.
[XU Guiqing.Roots distribution traits of three desert shrubs and their water use[D]. Beijing:Graduate University of Chinese Academy of Sciences,2008.]
[43] 于丹丹. 古尔班通古特沙漠南缘至腹地白梭梭与白梭梭群落的根系分布特征及生物量结构研究[D]. 北京:中国科学院研究生院,2010.
[YU Dandan.Spatial variation of the root systems and the biomass allocation of Haloxylon persicum species and Haloxylon persicum community in the Gurbantunggut Desert[D]. Beijing:Graduate University of Chinese Academy of Sciences,2010.]
文章导航

/