气候与水文

基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价

展开
  • 1 陕西师范大学地理科学与旅游学院,陕西 西安 710119;
    2 中国科学院西北生态环境资源研究院,甘肃 兰州 730000;
    3 日本国立岐阜大学流域圈科学研究中心,日本 岐阜 501—1193
宁亚洲(1994 -),男,硕士研究生,主要从事资源环境遥感方面研究. E-mail:nyz199422@163.com

收稿日期: 2019-08-06

  修回日期: 2019-12-12

  网络出版日期: 2020-11-18

基金资助

陕西省自然科学基金面上项目(2018JM4020); 国家重点研发计划项目(2017YFC0404300); 中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC031)资助

Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency

Expand
  • 1 School of Geography and Tourism,Shaanxi Normal University,Xi’an 710119,Shaanxi,China;
    2 Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;
    3 River Basin Research Center,Gifu University,Gifu 501-1193,Japan

Received date: 2019-08-06

  Revised date: 2019-12-12

  Online published: 2020-11-18

摘要

我国西北干旱区内陆河流域水资源匮乏,水资源利用主要用于农业生产,准确估算内陆河流域蒸散发与农业灌溉效率,对研究内陆河流域气候变化和水资源合理利用具有重要作用。利用基于地表能量平衡方程的SEBAL模型,对2017—2018年疏勒河流域蒸散量进行定量估算与时空分布特征分析,并结合降水量与净灌溉水量数据,对疏勒河流域昌马灌区的年内灌溉水有效利用系数进行估算。结果表明:(1) 疏勒河流域2017—2018年日均ET呈单峰变化趋势,最大值为6月的5. 03 mm·d–1,最小值为12月的0. 55 mm·d–1,并存在明显的空间分布差异。(2) 疏勒河流域四季ET差异显著,夏季ET达到最高的201. 83 mm,春秋次之,冬季最低为53. 92 mm;ET由东南向西北逐渐减小,流域上游ET明显高于中下游地区。(3) 昌马灌区各灌溉时段不同的灌溉水量造成了各灌季蒸散量的差异,灌区ET高值区主要分布在中部与东南部,低值区主要分布在西北部和灌区边缘。(4) 昌马灌区年内灌溉水有效利用系数呈下降趋势,其中春灌、夏灌、秋灌和冬灌分别为0. 76、0. 71、0. 69和0. 55,年均灌溉水有效利用系数为0. 67。

本文引用格式

宁亚洲, 张福平, 冯起, 魏永芬, 李玲, 刘洁遥, 曾攀儒 . 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020 , 43(4) : 928 -938 . DOI: 10.12118/j.issn.1000-6060.2020.04.08

Abstract

Water resources are scarce for inland river basins in arid regions of northwestern China,where water consumption is mainly for agriculture. Especially in arid regions,evapotranspiration(ET) is the main link to the water cycle and has an important impact on environmental changes. It is therefore important to accurately estimate ET and irrigation efficiency for predicting climate change and for rationally allocating water resources in inland river basins. The Shule River Basin is one of three inland river basins in the Hexi Corridor,and its ecological environment is fragile given its large annual average ET. Water use accounts for a large proportion ,and the utilization rate of agricultural irrigation water is high in this region. In this study,we estimated the daily evapotranspiration (ET) of the Shule River Basin (SRB) based on the Surface Energy Balance Algorithms for Land (SEBAL) model with satellite data (from the moderate-resolution imaging spectroradiometer known as MODIS) and meteorological data from March in 2017 through February in 2018. Then we applied a time-scale extension to obtain monthly and seasonal ET by using daily ET and meteorological data. We also analyzed the spatiotemporal distribution characteristics of ET to derive daily and seasonal ET. Then,combining the ET results from the SEBAL simulation and data collected on irrigation and precipitation for the Changma irrigation district (CM) during 2017–2018,we calculated the coefficient of irrigation-water effective utilization (“η”) for the CM on the basis of the water-balance equation,which was used for irrigation-efficiency assessment for the CM.
The main conclusions are as follows:(1) The variation range of average daily ET values was 0.55–5.03 mm across the SRB during 2017–2018,which showed a single peak change and obvious difference in spatial distribution. (2) There were significant differences in seasonal ET in the SRB;summer ET was the highest (201.83 mm),followed by spring and autumn,and the winter ET was the lowest (53.92 mm). The spatial pattern of seasonal ET shows that ET in the upper reaches of SRB was significantly higher than that in the middle and lower reaches,and ET decreased from the southeast to the northwest in the SRB. (3) The quantity of irrigation water in different irrigation periods resulted in the ET differences in the CM. The high-ET area was mainly in the middle and southeastern parts of the irrigation district,and the low-ET area was mainly in the northwestern part and along the margins of the district. (4) The “η” of CM showed a downward trend during the irrigation period,in which the values of “η” for the spring,summer,autumn,and winter irrigation periods were 0.76,0.71,0.69,and 0.55,respectively. The CM had a higher irrigation efficiency,with the annual “η” of 0.67.
Through simulation of monthly ET in the SRB for the period 2017–2018,the annual ET spatial distributions and fluctuations were more detailed and clearer. We found that ET of irrigation land could be accurately estimated by remote-sensing and meteorological data. The “η” of the irrigation district could easily be obtained from ET and measured irrigation data in each irrigation period,which can reflect CM irrigation efficiency during the year in the SRB.

参考文献

[1] ZHAO Lingling,XIA Jun,XU Chongyu,et al.Evapotranspiration estimation methods in hydrological models[J]. Journal of Geographical Sciences,2013,23(2):359–369.
[2] ZENG Z,WANG T,ZHOU F,et al.A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009[J]. Journal of Geophysical Research: Atmospheres,2014,119(3):1186–1202.
[3] 高瑜莲,柳锦宝,柳维扬,等. 近 14 a 新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理,2019,42(4):830–837.
[GAO Yulian,LIU Jinbao,LIU Weiyang,et al.Spatial-temporal variation characteristics of surface evapotranspiration and drought at the oasis of the southern Xinjiang in recent 14 years[J]. Arid Land Geography,2019,42(4):830–837.]
[4] 钟巧,焦黎,李稚,等. 博斯腾湖流域潜在蒸散发时空演变及归因分析[J]. 干旱区地理,2019,42(1):103–112.
[ZHONG Qiao,JIAO Li,LI Zhi,et al.Spatial and temporal changes of potential evapotranspiration and its attribution in the Bosten Lake Basin[J]. Arid Land Geography,2019,42(1):103–112.]
[5] YASSIN M A,ALAZBA A,MATTAR M A.Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate[J]. Agricultural Water Management,2016,163(1):110–124.
[6] 姜艳阳,王文,周正昊. MODIS MOD16蒸散发产品在中国流域的质量评估[J]. 自然资源学报,2017,32(3):517–528.
[JIANG Yanyang,WANG Wen,ZHOU Zhenghao.Evaluation of MODIS MOD16 evapotranspiration product in Chinese river basins[J]. Journal of Natural Resources,2017,32(3):517–528.]
[7] 杨秀芹,王国杰,潘欣,等. 基于GLEAM遥感模型的中国1980—2011年地表蒸散发时空变化[J]. 农业工程学报,2015,31(21) :140–149.
[YANG Xiuqin,WANG Guojie,PAN Xin,et al.Spatial-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(21):140–149.]
[8] 张晓玉,范亚云,热孜宛古丽·麦麦提依明,等. 基于SEBS模型的干旱区流域蒸散发估算探究[J]. 干旱区地理,2018,41(3):76–85.
[ZHANG Xiaoyu,FAN Yayun,MAIMAITIYIMING Reziwanguli,et al.Evapotranspiration estimation of watershed in arid area based on SEBS model[J]. Arid Land Geography,2018,41(3):76–85.]
[9] 田国珍,武永利,梁亚春,等. 基于蒸散发的干旱监测及时效性分析[J]. 干旱区地理,2016,39(4):721–729.
[TIAN Guozhen,WU Yongli,LIANG Yachun,et al.Drought monitoring and timeliness based on evapotranspiration model[J]. Arid Land Geography,2016, 39(4):721–729.]
[10] LONG D,SINGH V P.A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment,2012,121:370–388.
[11] 张圣微,张鹏,张睿,等. 科尔沁沙地典型区生长季蒸散发估算及其变化特征[J]. 水科学进展,2018,29(6):12–22.
[ZHANG Shengwei,ZHANG Peng,ZHANG Rui,et al.Estimation of growing season evapotranspiration and its variation in a typical area of Horqin Sandy Land[J]. Advances in Water Science,2018,29(6):12–22.]
[12] RAHIMI S,GHOLAMI SEFIDKOUHI M A,RAEINI-SARJAZ M,et al. Estimation of actual evapotranspiration by using MODIS images (a case study:Tajan catchment)[J]. Archives of Agronomy and Soil Science,2015,61(5):695–709.
[13] SANTOS C A G,SILVA R M D,SILVA A M,et al. Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region:A case study of the Brígida River Basin,Brazil[J]. Journal of South American Earth Sciences,2017,74:54–66.
[14] ELNMER A,KHADR M,KANAE S,et al.Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta[J]. Agricultural Water Management,2019,213:682–692.
[15] 李宝富,陈亚宁,李卫红,等. 基于遥感和SEBAL模型的塔里木河干流区蒸散发估算[J]. 地理学报,2011,66(9):1230–1238.
[LI Baofu,CHEN Yaning,LI Weihong,et al.Remote sensing and the SEBAL model for estimating evapotranspiration in the Tarim River[J]. Acta Geographica Sinica,2011,66(9):1230–1238.]
[16] 刘春雨,赵军,刘英英,等. 石羊河流域蒸散发量遥感估算及时空格局分析[J]. 国土资源遥感,2011,23(3):117–122.
[LIU Chunyu,ZHAO Jun,LIU Yingying,et al.Remote sensing estimation of evapotranspiration quantity and analysis of space-time structure over Shiyang River Basin[J]. Remote Sensing for Land & Resources,2011,23(3):117–122.]
[17] 周彦昭,周剑,李妍,等. 利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发[J]. 冰川冻土,2014,36(6):1526–1537.
[ZHOU Yanzhao,ZHOU Jian,LI Yan,et al.Simulating the evapotranspiration with SEBAL and Modified SEBAL (M-SEBAL) models over the desert and oasis of the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology,2014,36(6):1526–1537.]
[18] CHANG Y,DING Y,ZHAO Q,et al.Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions:A case study of the upper reach of the Shule River Basin,China[J]. Hydrological Processes,2016,31(3):514–524.
[19] 崔远来,熊佳. 灌溉水利用效率指标研究进展[J]. 水科学进展,2009,20(4):590–598.
[CUI Yuanlai,XIONG Jia.Advances in assessment indicators of irrigation water use efficiency[J]. Advances in Water Science,2009, 20(4):590–598.]
[20] 尚松浩,蒋磊,杨雨亭. 基于遥感的农业用水效率评价方法研究进展[J]. 农业机械学报,2015,46(10):86–97.
[SHANG Songhao,JIANG Lei,YANG Yuting.Review of remote sensing-based assessment method for irrigation and crop water use efficiency[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(10):86–97.]
[21] 周剑,吴雪娇,李红星,等. 改进SEBS 模型评价黑河中游灌溉水资源利用效率[J]. 水利学报,2014,45(12):1387–1398.
[ZHOU Jian,WU Xuejiao,LI Hongxing,et al.Improved SEBS model for evaluating irrigation water use efficiency in the middle reaches of the Heihe River[J]. Journal of Hydraulic Engineering,2014,45(12):1387–1398.]
[22] YANG Y,SHANG S,JIANG L.Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of north China[J]. Agricultural and Forest Meteorology,2012,164:112–122.
[23] LIAQAT U W,CHOI M,AWAN U K.Spatial-temporal distribution of actual evapotranspiration in the Indus Basin Irrigation System[J]. Hydrological Processes,2015,29(11):2613–2627.
[24] 常跟应,张文侠. 基于生态文明的疏勒河流域大规模移民反思[J]. 兰州大学学报(自然科学版),2014,50(3):405–409.
[CHANG Genying,ZHANG Wenxia.Ecological civilization-based rethinking of large-scale immigration and land development along Shule River[J]. Journal of Lanzhou University(Natural Sciences),2014, 50(3):405–409.]
[25] 孙栋元,胡想全,金彦兆,等. 疏勒河中游绿洲天然植被生态需水量估算与预测研究[J]. 干旱区地理,2016,39(1):154–161.
[SUN Dongyuan,HU Xiangquan,JIN Yanzhao,et al.Prediction and evaluation of ecological water requirement of natural vegetation in the middle reach oasis of Shule River Basin[J]. Arid Land Geography,2016,39(1):154–161.]
[26] 刘建军. 疏勒河灌区严格水资源管理促进水生态文明建设[J]. 农业科技与信息,2018,1:47–49.
[LIU Jianjun.Strict water resources management in Shule River irrigation area to promote the construction of water ecological civilization[J]. Agricultural Science-Technology and Information,2018,1:47–49.]
[27] 周妍妍,郭晓娟,郭建军,等. 基于SEBAL 模型的疏勒河流域蒸散量时空动态[J]. 水土保持研究,2019,26(1):168–177.
[ZHOU Yanyan,GUO Xiaojuan,GUO Jianjun,et al.Spatiotemporal dynamics of evapotranspiration in Shule River Basin based on SEBAL model[J]. Research of Soil and Water Conservation,2019,26(1):168–177.]
[28] 吴锦奎,陈军武,吴灏,等. 疏勒河上游高寒草甸蒸散对比研究[J]. 地理科学,2013,33(1):97–103.
[WU Jinkui,CHEN Junwu,WU Hao,et al.Comparative study of evapotranspiration in an alpine meadow in the upper reach of Shule River Basin[J]. Scientia Geographica Sinica,2013,33(1):97–103.]
[29] 蒋光昱,王忠静,尚松浩,等. 基于观测与模拟结合的疏勒河流域辣椒灌溉制度优化[J]. 农业工程学报,2018,34(增刊1):207–213.
[JIANG Guangyu,WANG Zhongjing,SHANG Songhao,et al.Irrigation optimization of pepper in Shule River Basin based on observation and simulation[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(Sup 1):207–213.]
[30] 曾国雄,杨占荣,张伟等. 疏勒河流域高效灌溉系统集成技术[J]. 水利规划与设计,2017,8:34–37.
[ZENG Guoxiong,YANG Zhanrong,ZHANG Wei,et al.Integrated technology of high efficiency irrigation system in Shule River Basin[J]. Water Resources Planning and Design,2017,8:34–37.]
[31] 张建新. 基于WEAP模型的疏勒河流域昌马灌区节水灌溉研究[D]. 北京:清华大学,2015.
[ZHANG Jianxin.Study on water-saving irrigation in changma irrigation area of Shule River Basin based on WEAP Model [D]. Beijing:Tsinghua University,2015.]
[32] 黄珊,冯起,齐敬辉,等. 河西走廊疏勒河流域水资源管理问题分析[J]. 冰川冻土,2018,40(4):846–852.
[HUANG Shan,FENG Qi,QI Jinghui,et al.Analyzing and discussing the water resources management in Shule River Basin in Hexi Corridor[J]. Journal of Glaciology and Geocryology,2018,40(4):846–852.]
[33] 严宇红,黄维东. 疏勒河流域泥沙分布规律及水沙关系研究[J]. 干旱区地理,2019,42(1):47–55.
[YAN Yuhong,HUANG Weidong.Sediment distribution and runoff-sediment relationship in the Shule River Basin[J]. Arid Land Geography,2019,42(1):47–55.]
[34] BASTIAANSSEN W G M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey[J]. Journal of Hydrology,2000,229(1):87–100.
[35] 刘素华,田静,米素娟. 遥感估算蒸散发量的日尺度扩展方法综述[J]. 国土资源遥感,2016,28(4):10–17.
[LIU Suhua,TIAN Jing,MI Sujuan.Review of methods on estimation of daily evapotranspiration from one time-of-day remotely sensed transient evapotranspiration[J]. Remote Sensing for Land & Resources,2016, 28(4):10–17.]
[36] 蒋磊,杨雨亭,尚松浩. 基于遥感蒸发模型的干旱区灌区灌溉效率评价[J]. 农业工程学报,2013,29(20):95–101.
[JIANG Lei,YANG Yuting,SHANG Songhao.Evaluation on irrigation efficiency of irrigation district in arid region based on evapotranspiration estimated from remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,29(20):95–101.]
[37] 盛彩红. 疏勒河流域典型作物需水量及作物系数研究[D]. 北京:清华大学,2017.
[SHENG Caihong.Study on water requirement and crop coefficient of typical crops in Shule River Basin[D]. Beijing:Tsinghua University,2017.]
[38] 阳勇,陈仁升,宋耀选,等. 黑河上游山区草地蒸散发观测与估算[J]. 应用生态学报,2013,24(4):1055–1062.
[YANG Yong,CHEN Rensheng,SONG Yaoxuan,et al.Measurement and estimation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River Basin,China[J]. Chinese Journal of Applied Ecology,2013,24(4):1055–1062.]
[39] 金学杰,周剑. 基于SEBS模型和Landsat 8数据的黑河下游蒸散发时空特性分析[J]. 冰川冻土,2017,39(3):572–582.
[JIN Xuejie,ZHOU Jian.Analysis of spatial-temporal characteristics of evapotranspiration in the lower reaches of Heihe River based on surface energy balance system model and Landsat 8 data[J]. Journal of Glaciology and Geocryology,2017,39(3):572–582.]
文章导航

/