区域发展

基于主成分分析的关中地区农业粮食生产变化的影响因素研究

展开
  • 陕西师范大学地理科学与旅游学院,陕西 西安 710062;

    西安理工大学土建学院,陕西 西安 710048; 3 中国科学院西北生态环境资源研究院,甘肃 兰州 730000

韩群柱 (1967-)男,博士研究生,副教授,研究方向为自然地理.E-mail:hanqz@xaut.edu.cn

收稿日期: 2019-05-22

  修回日期: 2019-11-28

  网络出版日期: 2020-03-25

基金资助

国家自然科学基金 (4187707751479163)资助

Influencing factors of agricultural production changes in Guanzhong based on PCA

Expand
  • School of Geography and Tourism,Shaanxi Normal University,Xian 710062,Shaanxi,China;

    School of Civil Engineering and Architecture,Xian University of Technology,Xian 710048,Shaanxi,China;Northwest Institute of EcoEnvironment and Resources,CAS,Lanzhou 730000,Gansu,China

Received date: 2019-05-22

  Revised date: 2019-11-28

  Online published: 2020-03-25

摘要

针对陕西省关中区域19782017年的农业生产数据,在分析关中40 a农业粮食生产的趋势变化后,运用主成分分析法,对影响关中农业生产中的地理环境和生产投入等主要因素进行了评价研究。结果表明:(1) 关中农业粮食生产的趋势变化呈现周期为37 a的循环增长方式,平均每周期峰值增长率为4.5%。(2) 主成分分析研究后得出,第一主成分全是地理因素指标,方差贡献率达到0.554,对关中地区农业粮食生产起着非常显著的决定影响作用,包括受灾农田面积(不含病虫害)、主要粮食作物播种面积、成灾农田面积(不含病虫害)、有效灌溉耕地面积、耕地面积;第二主成分方差贡献率为0.25,是影响粮食生产的重要因素和农业生产的生命补给。包括农业用电量、化肥、农用机械等生产资料投入和主要粮食作物稳产面积、劳动力投入因素指标;第三主成分为农药应用量,方差贡献率为0.068,影响较小。主成分累计方差贡献为0.872。通过对关中地区农业粮食生产变化的影响因素分析,可以为政府部门提出数据支撑和相关性的建议。

本文引用格式

韩群柱, 冯起, 高海东, 陈桂萍 . 基于主成分分析的关中地区农业粮食生产变化的影响因素研究[J]. 干旱区地理, 2020 , 43(2) : 474 -480 . DOI: 10.12118/j.issn.1000-6060.2020.02.22

Abstract

This study is based on the statistical data of agricultural grain production in the Guanzhong region of Shaanxi Province,China from 1978 to 2017.This paper discusses the changing trends of agricultural grain production in the Guanzhong region from 1978 to 2017.In addition,this study analyzed the factors influencing grain production from 1978 to 2017 by means of principal component analysis (PCA).The main results of the analysis and research are summarized below.First,the trend change of agricultural grain production in the Guanzhong region shows a cyclical growth pattern with a cycle of 3-7  and the average growth rate of grain production in each cycle is 4.5%.The grain production process is manifested as a series of continuous “large valleys or large peaks with high-yield years and low-yield years occurring successively,thus causing the grain yield to be extremely unstable.Second,the statistical data for agricultural production were calculated and analyzed by a PCA model.The cumulative variance contribution rate was greater than the 0.85 standard and there were three main components that had greater impacts on grain production.The first principal component factors are all geographical factors and the variance contribution rate reached 0.55;this indicates a very significant and decisive role on agricultural grain production in the Guanzhong region and is the most basic condition for guaranteeing grain production in Guanzhong.The main components include the farmland areas affected by disasters (excluding diseases and pests),areas cultivated with major food crops,areas of farmland affected by disasters (excluding diseases and pests),and effective areas of irrigated farmland and cultivated areas.The second principal component,with a cumulative variance of 0.25,is an important factor affecting grain production and vital supply for agricultural production in Guanzhong.In addition to the areas of farmland with stable grain production based on geographical factors,the index of input factors of production materials and the labor force such as agricultural electricity consumption,chemical fertilizers,and agricultural machinery are included.The third principal component is pesticide application,with a cumulative variance of 0.068,which exhibited little effect.The actual cumulative variance contribution rate of the three principal components is 0.87.

参考文献

[1]韩群柱,冯起,陈桂萍,等.渭河流域基于水利供水网络结构的水资源配置模式研究[J].干旱区地理,2016,39(4):747-753.[HAN Qunzhu, FENG Qi, CHEN Guiping,et al. Water resources allocation model in Weihe River Basin based on the structure of water supply network[J].Arid Land Geography, 2016, 39(4):747-753.] [2]贠蒲军,邵天杰.陕西省粮食生产安全的驱动因素分析[J].安徽农业科学,2012,40(36):17822-17825. [YUN Pujun,SHAO Tianjie. Analysis on driving factors of grain production security in Shaanxi Province[J]. Journal of Anhui Agriculture, 2012, 40(36):17822-17825.] [3]李会,任志远.陕西省粮食产量预测及其影响因素的灰色关联分析[J].国土与自然资源研究,2009,(4):56-58.[LI Hui,REN Zhiyuan. The grey correlation analysis of factors affecting grain production[J]. Terrltory & Natural Resources Study,2009,(4):56-58.] [4]李玉平.基于耕地压力指数的陕西省粮食安全状况研究[J].干旱区地理,2007,30(4):601-606.[LI Yupin.Grain security of basic cropland pressure index in Shaanxi Province[J]. Arid Land Geography,2007,30(4):601-606.] [5]吕晓虎,赵景波.陕西省粮食安全定量评价研究[J].干旱地区农业研究,2010,28(2):219-225. [LV Xiaohu,ZHAO Jingbo.Study on quantitative assessment of food security in Shaanxi Province[J]. Agricultural Research in the Arid Areas,2010,28(2):219-225.] [6]张婧,张仁陟,左小安,等.保护性耕作对黄土高原农田土壤理化性质的影响[J]. 中国沙漠,2016,36(1):137-143. [ZHANG Jing,ZHANG Renzhi,ZUO Xiao〖JP8〗’〖JP〗an,et al. Effects of conservative tillage on physical land chemical characteristics under a peawheat rotation system in the Loess Plateau[J]. Journal of Desert Research,2016,36(1):137-143.] [7]GOLDSTEIN M,UDRY C. The profits of power:Land rights and agricultural investment in China[J]. Journal of Political Economy, 2008,116:981-1022. [8]岳辉,刘英.近15 a陕西省植被时空变化与影响因素分析[J].干旱区地理,2019,42(2):314-323. [YUE Hui,LIU Ying. Vegetation spatiotemporal variation and its driving factors of Shaanxi Province in recent 15 years[J].Arid Land Geography,2019,42(2):314-323.] [9]张蕊.陕西省粮食产量的灰色关联分析[J].新西部,2013,(1):11-20.[ZHANG Rui.Grey correlation GM(0,N) analysis of grain yield in Shaanxi Province[J].New West,2013,(1):11-20.] [10]喻忠磊,杨新军,石育中,等. 关中地区城市干旱脆弱性评价[J]. 资源科学,2012,34(3):581-588. [YU Zhonglei,YANG Xinjun,SHI Yuzhong,et al. Evaluation of urban vulnerability to drought in Guanzhong area[J]. Resources Science,2012,34(3):581-588.] [11]潘安娥,杨青.基于主成分分析的武汉市经济社会发展综合评价研究[J].中国软科学,2005,(7):118-121. [PAN An’e,YANG Qing. Synthetic evaluation and study on Wuhan urban economic and social developmental strategies based on the principle component analysis[J].China Soft Science,2005,(7):118-121.] [12]李武鹏.基AIGA-B神经网络的粮食产量预测研究[D].太原:太原理工大学,2011.[LI Wupeng.Research of grain production prediction based on AIGA-SP neural network[D]. Taiyuan:Taiyuan Institute of Technology,2011.] [13]曹丽娟,张小平.基于主成分分析的甘肃省水资源承载力评价[J].干旱区地理,2017,40(4):906-912.[CAO Lijuan, ZHANG Xiaoping. Assessment of water resources carrying capacity in Gansu Province based on principal component analysis [J].Arid Land Geography,2017,40(4):906-912.] [14]竺可桢.论我国气候的几个特点及其与粮食作物生产的关系[C]//竺可桢文集.北京:科学出版社,1979:455-465.[ZHU Kezhen.Some characteristic features of Chinese climate and their effects on corp production[C]//ZHU Kezhen’s works. Beijing:Science Press,1979:455-465.] [15]史培军,王静爱,谢云,等. 最近15 a来中国气候变化、农业自然灾害与粮食生产的初步研究[J]. 自然资源学报,1997,12(3):197-202.[SHI Peijun,WANG Jin[JP8]g’[JP]ai,XIE Yun,et al.A preliminary study of climatic change, natural disasters of agriculture and grain yelid in China during the past 15 years[J].1997,12(3):197-202.] [16]GHASEMI A, NAMVAR E, SHARIFI M, et al. The study of the effect of investment in the agricultural sector on Iran economic growth in comparison with other sectors[J].Asian Journal of Research in Business Economics & Management,2014,4(11): 293. [17]杨勇,任志远. 关中地区土地利用综合分区及对策研究[J].地理研究,2010,29(1):154-162. [YANG Yong,REN Zhiyuan. Land use regionalization and countermeasures in Guanzhong region[J].Geographical Research,2010,29(1):154-162.] [18]刘闻,曹明明,宋进喜,等.陕西年降水量变化特征及周期分析[J].干旱区地理, 2013,36(5):865-874. [LIU Wen, CAO Mingming,SONG Jingxi, et al.Spatiotemporal distribution and temporal periodicity of annual precipitation in Shaanxi Province[J].Arid Land Geography,2013,36(5):865-874.] [19]莫宏伟. 基于GIS的关中地区土地利用变化及土地生态安全动态研究[D].西安:陕西师范大学,2010.[MO Hongwei.Evaluation of urban vulnerability to drought in Guanzhong Area[D].Xi’an:Shaanxi Normal University,2010.]
文章导航

/