地球信息科学

利用多源数据估算黑河流域总初级生产力

展开
  • 东华理工大学测绘工程学院,江西 南昌 330013

    北京师范大学遥感科学国家重点实验室,北京 100875 3 北京市陆表遥感数据产品工程技术研究中心,北京 100875

童志辉(1995-),男,硕士研究生,研究方向为生态遥感.E-mail:tongzhihui813@sina.com

收稿日期: 2019-03-25

  修回日期: 2019-08-14

  网络出版日期: 2020-05-08

基金资助

国家重点研发计划(2017YFA0603002);国家自然科学基金(41471349, 41531174);江西省教育厅科学技术研究项目(GJJ170439);江西省教育科学“十三五”规划课题(17YB070, 17YB079);刘宝珺地学青年科学基金(DMSM2017010)资助

Estimating gross primary production in the Heihe River Basin from multiple data sources

Expand
  • College of Surveying and Mapping,East China University of Technology,Nanchang 330013,Jiangxi,China;

    State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China; Beijing Engineering Research Center of Global Land Remote Sensing Product,Beijing 100875,China

Received date: 2019-03-25

  Revised date: 2019-08-14

  Online published: 2020-05-08

摘要

总初级生产力(GPP)决定了进入陆地生态系统的初始物质与能量,但由MODIS GPP产品获取的GPP在地表覆盖复杂的黑河流域却不足以准确的反映生态系统物质与能量的分布。因此,利用MODIS影像数据、ASTER GDEM数据、30 m分辨率土地利用覆被数据和中国区域地面气象要素驱动数据,驱动VPM模型模拟黑河流域2015510月的总初级生产力,并据此揭示黑河流域GPP在生长季的时空格局,时间分辨率为8 d,空间分辨率为500 m。研究结果表明:VPM模型估算结果的精度高于MODIS GPP产品,判定系数增长了45.5%,总均方根误差降低了57.0%;黑河流域生长季累积[WTBX]GPP[WTBZ]总体呈现出中游最高、上游其次、下游最低的显著空间分布梯度格局;全境与局部有植被覆盖区域的日GPP均呈先增加后减少倒U型变化规律,且前者在7月下旬达到最高值;植被覆盖率极低的地表区域生长季内的日GPP在基本稳定中上下波动,稳定值处于1 gC·m-2·d-1附近。

本文引用格式

童志辉, 熊助国, 孙睿, 刘向铜, 王东东 .

利用多源数据估算黑河流域总初级生产力[J]. 干旱区地理, 2020 , 43(2) : 440 -448 . DOI: 10.12118/j.issn.1000-6060.2020.02.18

Abstract

The initial matter and energy entering terrestrial ecosystem are determined by the gross primary productivity (GPP).Hovexer,the GPP measurements acquired by the MODIS [WTBX]GPP[WTBZ] products are not sufficient to accurately reflect the distribution of ecosystem matter and energy in the Heihe River Basin in Qinghai Province,Gansu Province and Inner Mongolia,China with complex surface coverage.Therefore,based on MODIS image data,ASTER GDEM data,land cover data with a spatial resolution of 30 m,and the China Meteorological Forcing Dataset,the VPM model was derived to simulate the gross primary productivity of the Heihe River Basin from May to October 2015 with a spatial resolution of 500 m and a temporal resolution of 8 days.Based on simulations using the VPM model,the spatial and temporal patterns of GPP in the Heihe River Basin during the growing season were determined.The results of the study indicate that the accuracy of the results estimated using the VPM model was higher than that of the MODIS GPP products.The judgment coefficient increased by 45.5%,while the total root mean square error reduced by 57.0%.The study results also demonstrate that the GPP accumulation during the growing season in the Heihe River Basin exhibited a significant spatial distribution gradient pattern,which can be described as the highest in the middle reaches,the next highest in the upper reaches,and the lowest in the lower reaches.In addition,the daily GPP of the whole and partial vegetation-covered areas in the Heihe River Basin first increased and then decreased in an inverted U-shape.The daily GPP values of all vegetationcovered areas reached the maximum in late July.The daily GPP values of those ground areas with very low vegetation coverage fluctuated up and down in their basic stability,while the stable value was approximately 1 gC·m-1·d-1.

参考文献

[1]高艳妮,于贵瑞,张黎,等.中国陆地生态系统净初级生产力变化特征——基于过程模型和遥感模型的评估结果[J].地理科学进展,2012,31(1):109-117.[GAO Yanni,YU Guirui,ZHANG Li,et al.The changes of net primary productivity in Chinese terrestrial ecosystem: Based on process and parameter models[J].Progress in Geography,2012,31(1):109-117.] [2]严燕儿.基于遥感模型和地面观测的河口湿地碳通量研究[D].上海:复旦大学,2009.[YAN Yan’er.Carbon flux in an enstuarine wetland estimated by remote sensing model and groundbased observations[D].Shanghai:Fudan University,2009.] [3]TURNER D P,RITTE W D,COHEN W B,et al.Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODAS GPP product validation[J].Remote Sensing of Environment,2003,88(3):256-270. [4]PRINCE S D,GOWARD S N.Global primary production:A remote sensing approach[J].Journal of Biogeography,1995,22:815-835. [5]XIAO X M,ZHANG Q Y,BRASWELL B,et al.Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J].Remote Sensing of Environment,2004,91(2):256-270. [6]LIU J,CHEN J M,CIHLAR J,et al.A processbased boreal ecosystem productivity simulator using remote sensing inputs[J].Remote Sensing of Environment,1997,62(2):158-175. [7]孙睿,朱启疆.陆地植被净第一性生产力的研究[J].应用生态学报,1999,10(6):757-760.[SUN Rui,ZHU Qijiang.Net primary productivity of terrestrial vegetation:A review on related rsearches[J].Chinese Journal of Applied Ecology,1999,10(6):757-760.] [8]WANG X,MA M,HUANG G,et al.Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin,China[J].International Journal of Applied Earth Observation and Geoinformation,2012,17: 94-101. [9]LI S,XIAO J,XU W,et al.Modelling gross primary production in the Heihe River Basin and uncertainty analysis[J].International Journal of Remote Sensing,2012,33(3):836-847. [10]闫敏,李增元,田昕,等.黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J].植物生态学报,2016,40(1):1-12.[YAN Min,LI Zengyuan,TIAN Xin,et al.Remote sensing estimation of gross primary productivity and its response to climate change in the upstream of Heihe River Basin[J].Journal of Plant Ecology,2016,40(1):1-12.] [11]CUI T X,WANG Y J,SUN R,et al.Estimating vegetation primary production in the Heihe River Basin of china with multi-source and multi-scale data[J].PloS One,2016,11(4):e0153971,doi:10.1371/journal.pone.0153971. [12]王旭峰,马明国,李新,等.遥感[WTBX]GPP[WTBZ]模型在高寒草甸的应用比较[J].遥感学报,2012,16(4):751-763.[WANG Xufeng,MA Mingguo,LI Xin,et al.Comparison of remote sensing based GPP models at an alpine meadow site[J].Journal of Remote Sensing,2012,16(4):751-763.] [13]HIRANO A,WELCH R,LANG H.Mapping from ASTER stereo image data: DEM validation and accuracy assessment[J].ISPRS Journal of Photogrammetry and Remote Sensing,2003,57(5):356-370. [14]ZHONG B,YANG A X,NIE A H,et al.Finer resolution landcover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River Basin[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(10):4973-4992. [15]仲波,马鹏,聂爱华,等.基于时间序列HJ-1/CCD数据的土地覆盖分类方法[J].中国科学:地球科学,2014,44(5):967-977.[ZHONG Bo,MA Peng,NIE Aihua,et al.Land cover mapping using time series HJ-1/CCD data[J].Science China: Earth Sciences,2014,44(5):967-977.] [16]LI X,LIU S M,XIAO Q,et al.A multiscale dataset for understanding complex ecohydrological processes in a heterogeneous oasis system[J].Scientific Data,2017,4:170083,doi:10.1038/ sdata.2017.83. [17]CHEN Y Y,YANG K,HE J,et al.Improving land surface temperature modeling for dry land of China[J].Journal of Geophysical Research:Atmospheres,2011,116(D20): doi:10.1029/ 2011JD015921. [18]翁笃鸣,孙治安.我国山地气温直减率的初步研究[J].地理研究,1984,3(2):24-34.[WENG Duming,SUN Zhian.A preliminary study of the lapse rate of surface air temperature over mountainous regions of China[J].Geographical Research,1984,3(2):24-34.] [19]LI X,CHENG G D,LIU S M,et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J].Bulletin of the American Meteorlogical Society,2013,94(8):1145-1160. [20]LIU S M,XU Z W,WANG W Z,et al.A comparison of eddy-covariance and large aperture scintilla meter measurements with respect to the energy balance closure problem[J].Hydrology and Earth System Sciences,2011,15(4):1291-1306. [21]张蕾.张掖绿洲灌区不同下垫面碳通量研究[D].北京:北京师范大学,2015.[ZHANG Lei.Study on carbon flux of different underlying surfaces in Zhangye oasis area[D].Beijing:Beijing Normal University,2015.] [22]ZHANG Y,XIAO X M,JIN C,et al.Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in north America[J].Remote Sensing of Environment,2016,183:154-169. [23]ZHANG Y,XIAO X M,WU X C,et al.A global moderate resolution dataset of gross primary production of vegetation for 2000-2016[J].Scientific Data,2017,4:170165,doi:10.1038/sdata.2017.165. [24]郭海强.长江河口湿地碳通量的地面监测及遥感模拟研究[D].上海:复旦大学,2010.[GUO Haiqiang.Carbon fluxes over an estuarine wetland: In situ measurement and modeling[D].Shanghai:Fudan University,2010.] [25]甄玉龙.黑河径流演变分析及探讨[J].甘肃科技,2017,33(10):49-50.[ZHEN Yulong.Analysis and discussion on evolution of Heihe River runoff[J].Gansu Science and Technology,2017,33(10):49-50.] [26]WANG H S,JIA G S,FU C B,et al.Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling[J].Remote Sensing of Environment,2010,114(10):2248-2258.
文章导航

/