气候与水文

基于水化学和同位素评价马莲河下游地下水补给河水的时空变化

展开
  • 中国地质调查局水文地质环境地质调查中心,河北 保定 071051 河北省地质工程勘查院,河北 保定 071000

王雨山(1984-),男,高级工程师,主要从事同位素水文地球化学研究.E-mail:cug_wys@sina.com

收稿日期: 2019-05-12

  修回日期: 2019-08-01

  网络出版日期: 2020-03-25

基金资助

国家自然科学基金项目(41502259);中国地质调查局项目(DD20160288DD20190333)资助

Quantifications of spatial and temporal variations in groundwater discharge into a river using hydrochemical and isotopic tracers

Expand
  • Center for Hydrogeology and Environmental Geology Survey,China Geological Survey,Baoding 071051,Hebei,China;Baoding Geological Engineering Exploration Institute,Baoding 071000,Hebei,China

Received date: 2019-05-12

  Revised date: 2019-08-01

  Online published: 2020-03-25

摘要

准确评价地下水对河水的补给量是流域水资源量管理和合理利用的基础。在马莲河流域下游采集不同季节地表水和地下水样品75组,利用Cl-、电导率(EC)和D18O同位素多方法联合评价,识别了地下水补给河水的位置、补给量及其季节变化。结果表明:马莲河水ECCl-质量浓度沿着流向均呈降低趋势,δD和δ18O值沿流向减小。雨季ECCl-质量浓度最低,δD和δ18O值最高。地下水各组分浓度均低于河水,时空变化不明显。地下水单宽排泄量存在时空变异,上段和下段为地下水强排泄区,中段地下水排泄较弱,不同季节地下水排泄量占总排泄量的72.20%95.07%。雨季地下水单宽排泄量显著降低,河水中基流比例由雨季前期的68.89%降至29.43%。整体上,地下水补给河水季节变化明显,而空间变化规律较为稳定。研究成果有利于深入认识河水和地下水的相互作用机制,并为当地水资源利用提供基础依据。

本文引用格式

王雨山, 郭媛, 周殷竹, 李戍, 王茜 .

基于水化学和同位素评价马莲河下游地下水补给河水的时空变化

[J]. 干旱区地理, 2020 , 43(2) : 290 -298 . DOI: 10.12118/j.issn.1000-6060.2020.02.02

Abstract

The Malian River,located in the southwestern portion of the Ordos Basin,Inner Mongolia,China,is a secondary tributary of the middle reaches of the Yellow River.It has experienced mounting pressure from exploration and utilization of water resources,so the area has been facing serious water shortages and deterioration of water quality.Finding accurate ways to quantify groundwater discharge to the river is critical for protecting and managing the water resources in the area.To study the spatial and temporal variations of groundwater recharge,we collected 75 samples of surface water and groundwater in the stretch of the river downstream of the Malian River during premonsoon,monsoon,and postmonsoon seasons.A multitracer mass balance approach was applied to identify the location,amount,and seasonal variations of groundwater discharge.We used Cl- concentrations and electrical conductivity in conjunction with oxygen and hydrogen isotopes.We observed general decreases in Cl- concentrations (387.20-707.42 mg·L-1) and EC (1 705.40-3 123.60 μs·cm-1),as well as δ18O (-10.41‰--6.30‰) and δD values (-78.25‰--54.88‰) as we moved downstream.The Cl- concentrations and EC values reached their minimum values during the monsoon season,when δ18O and δD values peaked.All of the tracers had lower concentrations or isotope ratios in the groundwater than they did in the river water.Groundwater values included Cl- concentrations (115.92-255.96 mg·L-1),EC (409.58-196.84 μs·cm-1),δ18O (-11.19‰--9.11‰),and δD (-79.80‰--68.28‰).No evident spatial or temporal variations in groundwater tracers were observed.All the groundwater samples had δD and δ18O values close to the Local Meteoric Water Line,indicating that groundwater was recharged by precipitation and experienced limited evaporation.The river water was generally more enriched in δD and δ18O,which may have resulted from evaporation.Groundwater discharge rates varied spatially and temporally.Groundwater in the upper and lower segments had much higher discharge rates (accounting for 72.20%-95.07% of the total) than that in middle segment.The percentage of base flow in the river discharge was 68.89% during the premonsoon and 71.19% during the postmonsoon season.Groundwater inflows decreased sharply during monsoon season,with the ratio of base flow only accounting for 29.43% of the total river discharge.In general,the seasonal variations in groundwater discharge to the river were pronounced,while spatial variation was not evident.The extent of interactions between river water and groundwater was mainly dominated by the geological and hydrogeological settings and conditions,such as the aquifer thickness,water hydraulic gradient,and riverbed permeability,so no spatial variations related to the stable conditions in the downstream direction were evident.Uncertainties remain in the model.However,when used correctly,a multitracer method can be applied to provide detailed information on the spatial distribution of groundwater discharge,especially in gaining rivers.This study could provide a theoretical basis and technical support for better understanding the interactions between river water and groundwater,as well as the sustainable development of water resources and ecological and environmental protection.

参考文献

[1]王文科,李俊亭,王钊,等.河流与地下水关系的演化及若干科学问题[J].吉林大学学报(地球科学版),2007,37(2):231-238.[WANG Wenke,LI Junting,WANG Zhao,et al.Evolution of the relationship between river and groundwater and several scientific problems [J].Journal of Jilin University (Earth Science Edition),2007,37(2):231-238.] [2]ORTEGA L,MANZANO M,CUSTODIO E,et al.Using 222Rn to identify and quantify groundwater inflows to the Mundo River (SE Spain)[J].Chemical Geology,2015,395:67-79. [3]王文科,宫程程,张在勇,等.旱区地下水文与生态效应研究现状与展望[J].地球科学进展,2018,33(7):702-718.[WANG Wenke,GONG Chengcheng,ZHANG Zaiyong,et al.Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J].Advance in Earth Science,2018,33(7):702-718.] [4]王彩霞,张杰,董志文,等.基于氢氧同位素和水化学的祁连山老虎沟冰川区径流过程分析[J].干旱区地理,2015,38(5):927-935.[WANG Caixia,ZHANG Jie,DONG Zhiwen,et al.Glacier meltwater runoff process analysis on δD和δ18O isotope and chemistry in the Laohugou glacier basin of the Qilian Mountains[J].Arid Land Geography,2015,38(5):927-935.] [5]张兵,宋献方,张应华,等.第二松花江流域地表水与地下水相互关系[J].水科学进展,2014,25(3):336-347.[ZHANG Bing,SONG Xianfang,ZHANG Yinghua,et al.Relationship between surface water and groundwater in the second Songhua River Basin[J].Advance in Water Science,2014,25(3):336-347.] [6]文广超,王文科,段磊,等.基于水化学和稳定同位素定量评价巴音河流域地表水和地下水转化关系[J].干旱区地理,2018,41(4):734-743.[WEN Guangchao,WANG Wenke,DUAN Lei,et al.Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope[J].Arid Land Geography,2018,41(4):734-743.] [7]YANG Z,ZHOU Y X,CHEN W,et al.A multi-method approach to quantify groundwater/surface water interactions in the semi-arid Hailiutu River Basin,northwest China[J].Hydrogeology Journal,2014,22(3):527-541. [8]姜海宁,谷洪彪,迟宝明,等.新疆昭苏—特克斯盆地地表水与地下水转化关系研究[J].干旱区地理,2016,39(5):1078-1088.[JIANG Haining,GU Hongbiao,CHI Baoming,et al.Interaction relationship between surface water and groundwater in ZhaosuTekes Basin,Xinjiang Uygur Autonomous Region,China[J].Arid Land Geography,2016,39(5):1078-1088.] [9]COOK P G.Estimating groundwater discharge to rivers from river chemistry surveys[J].Hydrological Processes,2013,27(25):3694-3707. [10]LEFEBVRE K,BARBECOT F,LAROCQUE M,et al.Combining isotopic tracers (222Rn and δ13C) for improved modeling of groundwater discharge to small rivers[J].Hydrological Processes,2015,29(12):2814-2822. [11]YU M L,CARTWRIGHT I,BRADEN J L,et al.Examining the spatial and temporal variation of groundwater inflows to a valley to flood plain river using 222Rn,geochemistry and river discharge:The Ovens River,Southeast Australia[J].Hydrology & Earth System Sciences,2013,17(12):4907-4924. [12]苏小四,万玉玉,董维红,等.马莲河河水与地下水的相互关系:水化学和同位素证据[J].吉林大学学报(地球科学版),2009,39(6):1087-1094.[SU Xiaosi,WAN Yuyu,DONG Weihong,et al.Hydraulic relationship between Malian River and groundwater:Hydrogeochemical and isotopic evidences[J].Journal of Jilin University(Earth Science Edition),2009,39(6):1087-1094.] [13]侯光才,尹立河,苏小四,等.鄂尔多斯白垩系盆地地下水流动系统驻点的理论与实际意义[J].水文地质工程地质,2013,40(1):19-23.[HOU Guangcai,YIN Lihe,SU Xiaosi,et al.Theoretical and practical meaning of stagnant points of groundwater flow system in the Cretaceous basin of Ordos basin[J].Hydrogeology & Engineering Geology,2013,40(1):19-23.] [14]卢龙彬,付强,黄金柏.黄土高原北部水蚀风蚀交错区产流条件及径流系数[J].水土保持研究,2013,20(3):17-23.[LU Longbin,FU Qiang,HUANG Jinbai.Runoff conditions and runoff coefficient of the wind-water erosion crisscross region on the northern Loess Plateau[J].Research of Soil and Water Reservation,2013,20(3):17-23.] [15]陈静生,王飞越,何大伟.黄河水质地球化学[J].地学前缘,2006,13(1):58-73.[CHEN Jingsheng,WANG Feiyue,HE Dawei.Geochemistry of water quality of the Yellow River Basin[J].Earth Science Frontiers,2006,13(1):58-73.] [16]陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘,2006,13(1):74-85.[CHEN Jingsheng,WANG Feiyue,XIA Xinghui.Geochemistry of water quality of the Yangtze River Basin[J].Earth Science Frontiers,2006,13(1):74-85.] [17]陈静生,何大伟.珠江水系河水主要离子化学特征及成因[J].北京大学学报(自然科学版),1999,35(6):786-793.[CHEN Jingsheng,HE Dawei.Chemical characteristics and genesis of major ions in the Pearl River Basin[J].Acta Scientiarum Naturalium Universitatis Pekinensis,1999,35(6):786-793.] [18]解建仓,张建龙,朱记伟,等.马莲河苦咸水来源分析及治理方案[J].资源科学,2011,33(1):77-85.[XIE Jiancang,ZHANG Jianlong,ZHU Jiwei,et al.Analysis of brackish water sources and treatment plan in the Malian River[J].Resources Science,2011,33(1):77-85.] [19]郭巧玲,熊新芝,姜景瑞.窟野河流域地表水—地下水的水化学特征[J].环境化学,2016,35(7):1372-1380.[GUO Qiaoling,XIONG Xinzhi,JIANG Jingrui.Hydrochemical characteristics of surface and ground water in the Kuye River Basin[J].Environmental Chemistry,2016,35(7):1372-1380.] [20]黄锦忠,谭红兵,王若安,等.我国西北地区多年降水的氢氧同位素分布特征研究[J].水文,2015,35(1):33-39.[HUANG Jinzhong,TAN Hongbing,WANG Ruoan,et al.Hydrogen and oxygen isotopic analysis of perennial meteoric water in northwest China[J].Journal of China Hydrology,2015,35(1):33-39.] [21]贺强,孙从建,吴丽娜,等.基于GNIP的黄土高原区大气降水同位素特征研究[J].水文,2018,38(1):58-66.[HE Qiang,SUN Congjian,WU Lina,et al.Study on isotopic characteristics of atmospheric precipitation in Loess Plateau based on GNIP[J].Journal of China hydrology,2018,38(1):58-66.] [22]刘心彪,周斌,魏玉涛.基于环境同位素的陇东盆地地下水分析[J].干旱区研究,2009,26(6):804-810.[LIU Xinbiao,ZHOU Bin,WEI Yutao.Analysis on groundwater based on environmental isotopes in the Longdong Basin[J].Arid Zone Research,2009,26(6):804-810.] [23]潘峰,张清寰,何建华.甘肃董志塬地区第四系地下水补给环境与水化学特征演化[J].干旱区地理,2014,37(1):9-18.[PAN Feng,ZHANG Qinghuan,HE Jianhua.Groundwater recharge environment and geochemistry evolution of the Quaternary aquifer in the Dunzhiyuan region,Gansu Province[J].Arid Land Geography,2014,37(1):9-18.] [24]LI Z,CHEN X,LIU W,et al.Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers[J].Science of the Total Environment,2017,586:827-835. [25]CARTWRIGHT I,GILFEDDER B.Mapping and quantifying groundwater inflows to Deep Creek (Maribyrnong catchment,SE Australia) using 222Rn,implications for protecting groundwater dependant ecosystems[J].Applied Geochemistry,2015,52:118-129. [26]GUA A,GRASBY S,MAYER B.Influence of saline groundwater discharge on river water chemistry in the Athabasca oil sands region:A chloride stable isotope and mass balance approach[J].Applied Geochemistry,2018,89:75-85.
文章导航

/