区域发展

西北地区居民生活碳排放现状分析及预测

展开
  • 1兰州大学资源环境学院,甘肃兰州730000; 2兰州文献情报中心/全球变化研究信息中心,甘肃兰州730000
徐丽(1993-),女,硕士研究生,主要从事居民碳排放预测研究. E-mail:lxu16@lzu.edu.cn

收稿日期: 2019-04-09

  修回日期: 2019-07-17

  网络出版日期: 2019-09-19

基金资助

国家重点研发计划(2016YFA0602803

Analysis and prediction of household carbon emission in northwest China

Expand
  • 1 College of Resources and Environment,Lanzhou University,Lanzhou 730000,Gansu,China; 2 Scientific Information Center for Resources and Environment/Global Change Research Information Center,Lanzhou 730000,Gansu,China

Received date: 2019-04-09

  Revised date: 2019-07-17

  Online published: 2019-09-19

摘要

 

我国西北地区经济发展、居民生活水平和碳排放均低于全国平均水平,随着国家政策倾斜,居民生活条件逐步改善,居民生活碳排放量提升空间较大,排放格局将受影响,这对西北地区本就脆弱的生态环境更加不利。目前有关居民碳排放的研究多集中在人类活动频繁、碳排放量大的我国东、南部地区,较少关注西北地区,但碳排放增加、环境成本加重对于欠发达地区的影响更加深远。其次,研究者关注居民碳排放预测时,通常着眼于数量预测,忽视了空间格局预测,不利于区域间协同发展。基于19972016年西北五省居民能源消耗和消费支出数据,首先利用直接系数法和投入产出法测算了19972016年西北地区居民生活碳排放,对其现状进行分析;第二,基于标准差椭圆和ARIMA模型从数量和空间格局上对20172021年西北居民生活碳排放进行预测。结果表明:19972016年,西北居民生活碳排放呈先缓慢后快速的上升趋势。直接碳排放稳定在0.30.4×108 t;间接碳排放达到2.38×108 t;空间分布总体稳定,呈西北—东南分布,移动趋势为西北—东南—西北,标准差椭圆中心在(99.07°E,38.19°N)附近移动。20172021年,直接碳排放达到0.543×108 t;间接碳排放为3.631×108 t;主体区域沿X轴发散,Y轴收敛,旋转轴变化小,随着西部大开发和脱贫的推进,新疆排放量次于陕西,增速较快,推动碳排放主体区域向西北移动。旨在为实现西北地区人口、消费、环境协调发展、引导居民树立低碳消费的价值理念建言献策。

本文引用格式

徐丽, 曲建升, 李恒吉, 吴金甲, 张洪芬 . 西北地区居民生活碳排放现状分析及预测[J]. 干旱区地理, 2019 , 42(5) : 1166 -1175 . DOI: 10.12118/j.issn.1000-6060.2019.05.22

Abstract

 

The economic development, living standard of residents and carbon emissions in Northwest China are lower than the national average.However,with the favorable policies the economic development is being improved and the household living standard is gradually raised up which will lead to an increase of the residents living carbon emissions,and the emission pattern will also be affected.This is detrimental to the fragile ecological environment of the Northwest China.At present,most of the researches on residents’ carbon emissions are focused on the eastern and southern regions of China where there are frequent and significant human activities and high carbon emissions,and less attention has been paid to the northwest region,but the increase of carbon emissions and the increase of environmental costs have a more far-reaching impact on the less developed areas.In addition,when researchers pay attention to the prediction of residents’ carbon emissions,they usually focus on the quantitative prediction and ignore the spatial pattern prediction,which is not conducive to the coordinated development between regions.Based on the data of energy consumption and consumption expenditure in the five provinces of Northwest China,including Shaanxi,Gansu,Qinghai,Ningxia and Xinjiang from 1997 to 2016,this paper firstly used the direct coefficient method to measure the residents’ direct carbon emissions,and the input-output method to calculate the indirect carbon emissions of the residents and analyzes the present situation of residents’ carbon emissions in the northwest region.Secondly,based on standard deviation ellipse and Autoregressive Integrated Moving Average Model,the carbon emissions of residents in Northwest China were predicted in terms of quantity and spatial pattern from 2017 to 2021.Major results are listed as follows: From 1997 to 2016,household carbon emissions in Northwest China showed a rising trend with an initial slow pace followed by a quick pace.The direct carbon emissions were stabilized in the range from 0.3×108 t to 0.4×108 t,and the indirect carbon emissions reached 2.38×108 t.The spatial distribution of household carbon emissions in Northwest China was generally steady with a direction pattern from northwest to southeast.And the moving trend of standard deviation ellipse was from northwest to southeast to northwest,and the center of standard deviation ellipse moved around the point of (99.07°E,38.19°N).From 2017 to 2021,the direct household carbon emissions in Northwest China reach to 0.543×108 t and the indirect carbon emissions are 3.631×108 t by 2021.With the development of the western region in China and the promotion of poverty alleviation,Xinjiang Province had a lower emission than Shaanxi,but it had the higher growth rate than Shaanxi.These factors are all driving the main areas of carbon emission northwestward.The purpose of this paper is to recommend how to coordinate between the population and consumption and the environment,leading citizens to establish the value of low-carbon consumption.

参考文献

[1]万文玉,赵雪雁,王伟军.中国城市居民生活能源碳排放的时空格局及影响因素分析[J].环境科学学报,2016,36(9):3445-3455. [WAN Wenyu,ZHAO Xueyan,WANG Weijun.Spatial-temporal patterns and impact factors analysis on carbon emissions from energy consumption of urban residents in China[J].Acta Scientiae Circumstantiae,2016,36(9):3445-3455.] [2]BIN S,DOWLATABADI H.Consumer lifestyle approach to US energy use and the related CO2 emissions[J].Energy Policy,2005,33(2):197-208. [3]曾静静,张志强,曲建升,等.家庭碳排放计算方法分析评价[J].地理科学进展,2012,31(10):1341-1352.[ZENG Jingjing,ZHANG Zhiqiang,QU Jiansheng,et al.Analysis and evaluation of methods for household carbon emissions calculation[J].Progress in Geography,2012,31(10):1341-1352.] [4]刘晶茹,PETERS G P,王如松,等.综合生命周期分析在可持续消费研究中的应用[J].生态学报,2007,(12):5331-5336.[LIU Jingru,PETERS G P,WANG Rusong,et al.Hybrid life-cycle analysis and its applications in sustainable consumption researches[J].Acta Ecologica Sinica,2007,(12):5331-5336.] [5]LIU L N,QU J S,CLARKESATHER A,et al.Spatial variations and determinants of per capita household CO2 emissions (PHCEs) in China[J].Sustainability,2017,9(7):1277. [6]王东,李玥凝.广东省居民生活消费碳排放与居民收入关系研究[J].中国人口·资源与环境,2017,27(S1):218-221.[WANG Dong,LI Yuening.Relationship between household CO2 emissions and residents’ income in Guangdong Province[J].China Population,Resource and Enviornent,2017,27(S1):218-221.] [7]张馨.中国能源消费碳排放的时空差异及驱动因素研究[J].干旱区地理,2018,41(5):1115-1122.[ZHANG Xin.Spatial temporal differences and driving factors of carbon emission from energy consumption in China[J].Arid Land Geography,2018,41(5):1115-1122.] [8]张艳平,张丽君,崔盼盼,等.中国居民碳排放时空特征及影响因素研究[J].干旱区地理,2018,41(2):401-408.[ZHANG Yanping,ZHANG Lijun,CUI Panpan,et al.Spatial and temporal characteristics of Chinese residents’ carbon emissions and its influencing factors[J].Arid Land Geography,2018,41(2):401-408.] [9]朱婧,刘学敏,初钊鹏.低碳城市能源需求与碳排放情景分析[J].中国人口·资源与环境,2015,25(7):48-55.[ ZHU Jing,LIU Xuemin,CHU Zhaopeng.Scenario analysis on energy demand and CO2 emission of low carbon city[J].China Population,Resource and Enviorment,2015,25(7):48-55.] [10]BOX G E, JENKINS G M.时间序列分析预测与控制[M].北京:中国统计出版社,2003.[BOX G E, JENKINS G M.Time series analysis, prediction and control[M].Beijing:China Statistical Press,2003.] [11]PRANANDA J,HANTORO R,NUGROHO G.The prediction of carbon dioxide emission using ARIMA for support green energy development in Surabaya municipality[M].Knowledge Publishing Services,2015,2(2):106. [12]李建豹,黄贤金,吴常艳,等.中国省域碳排放的空间格局预测分析[J].生态经济,2017,33(3):46-52. [ LI Jianbao,HUANG Xianjin,WU Changyan,et al.Spatial pattern forecast of China’s provincial carbom emissions[J].Ecological Economy,2017,33(3):46-52.] [13]李建豹,曲建升,张志强.西北地区家庭生活碳排放特征及其影响因素研究[J].干旱区地理,2014,37(4):759-766.[LI Jianbao,QU Jiansheng,ZHANG Zhiqiang.Characteristics and influencing factors of household carbon emissions in Northwest China[J].Arid Land Geography,2014,37(4):759-766.] [14]叶震.中国居民消费对二氧化碳排放的影响——基于碳排放投入产出模型的分析[J].统计与信息论坛,2011,26(11):39-43.[YE Zhen.Analysis on the impact of China’s consumption on carbon dioxide emissions:Based on input-output model[J]. Statistics & Information Forum,2011, 26(11):39-43.] [15]刘晓婷,陈闻君.基于ESDAGIS的新疆能源碳排放空间差异动态演化分析[J].干旱区地理,2016,39(3):678-685.[LIU Xiaoting,CHEN Wenjun.Dynamic evolution of spatial disparity of energy carbon emissions in Xinjiang based on ESDA-GIS[J].Arid Land Geography,2016,39(3):678-685.] [16]贺三维,王伟武,曾晨,等.中国区域发展时空格局变化分析及其预测[J].地理科学,2016, 36(11):1622-1628.[HE Sanwei,WANG Weiwu,ZENG Chen et al.Spatio-temporal pattern of economic development and the forecast in China[J].Scientia Geographica Sinica,2016,36(11):1622-1628.]
文章导航

/