地理信息科学

基于改进型TVDI在干旱区旱情监测中的应用研究

展开
  • 1中国科学院新疆生态与地理研究所,新疆乌鲁木齐830011;2中国科学院大学,北京100049; 3中国科学院中亚生态与环境研究中心,新疆乌鲁木齐830011
陈丙寅(1994-),男,河南驻马店人,硕士,研究方向为干旱区旱情监测. E-mail: 13276382776@163.com

收稿日期: 2019-01-12

  修回日期: 2019-03-15

  网络出版日期: 2019-07-25

基金资助

国家重点研发计划项目(2017YFB0504204);国家自然科学基金项目(41761144079)资助

Application of modified [WTHX]TVDI[WTHZ] in drought monitoring in arid areas

Expand
  • 1Xinjiang Institute of Ecology and Geography,State Key Laboratory of Desert and Oasis Ecology,Urumqi 830011,Xinjiang,China; 2University of Chinese Academy of Sciences,Beijing 100049,China;3Research Center for Ecology and Environment of Central Asia,Chinese Academy of Sciences,Urumqi 830011,Xinjiang,China

Received date: 2019-01-12

  Revised date: 2019-03-15

  Online published: 2019-07-25

摘要

干旱是全球范围内影响最为广泛的自然灾害之一,其所导致的土壤沙漠化、荒漠化和盐碱化给生态环境造成不可逆的危害。通过对MODIS数据进行投影转换、去云等预处理的基础上,利用地形校正对TVDI模型进行改进,构建了改进型的温度植被干旱指数(mTVDI)用于新疆干旱区旱情监测。利用土壤实测数据对mTVDI及传统的TVDI模型进行对比验证。研究结果表明:(1) 利用EVI与校正后的LST构建的mTVDIE对干旱区旱情的敏感度最高,与实测土壤水分数据的相关性R2为0.74。(2) 从空间上看,新疆2015年旱情分布以塔里木盆地和准噶尔盆地为两个干旱中心,旱情状况由严重逐步向周围山区递减至湿润状态。从时间上看,新疆6月、7月和8月旱情最为严重。(3) 研究利用TRMM降水数据对基于mTVDIE反演的新疆旱情时空分布特征进行对比分析,结果表明二者所表现出的旱情时空分布较为一致,不同时间段内的降水量与mTVDIE之间具有一定的相关性,且均通过了P<0.01显著性检验。综上,基于TVDI所提出的mTVDIE 能够有效开展新疆干旱区旱情监测,且精度较高,从而为今后定量化开展大区域尺度旱情监测研究提供参考。

关键词: 干旱区; 旱情监测; TVDI; TRMM

本文引用格式

陈丙寅, 杨辽, 陈曦, 王伟胜 . 基于改进型TVDI在干旱区旱情监测中的应用研究[J]. 干旱区地理, 2019 , 42(4) : 902 -913 . DOI: 10.12118/j.issn.1000-6060.2019.04.22

Abstract

The drought is one of the most influential natural disasters on a global scale.The soil desertification and salinization from drought can cause irreversible damage to the ecological environment.On basis of the preprocessing and cloud removal of MODIS data,this paper modifies the TVDI model through terrain correction and constructed an modified Temperature Vegetation Dryness Index (mTVDI) for drought monitoring in arid regions of Xinjiang,China,and compared it with the traditional TVDI and verified it using soil measured data.The results showed as follows: (1) mTVDIE constructed by EVI(Enhanced Vegetation Index)and corrected LST(Land Surface Temperature)has the highest sensitivity to drought monitoring in arid area, and the correlation with measured soil moisture data is R2:0.74; (2) In 2015,the drought in Xinjiang was centered in the Tarim Basin and the Junggar Basin, and the situation was gradually decreased from the serious drought in the centers to a humid state in the mountainous areas. From the time point of view,the drought in Xinjiang was the most serious in June, July and August; (3) The spatial and temporal distribution characteristics of drought in Xinjiang based on mTVDIE were compared and analyzed with TRMM precipitation data. The result shows that the spatial and temporal distribution of drought was consistent between the two methods.The correlation between precipitation and mTVDIE in different time periods was high, and passed the P< 0.01 significance test.Above all,mTVDIE based on TVDI can effectively carry out drought monitoring in arid regions of Xinjiang with high precision.Therefore,this will provide reference for the quantitative research on drought monitoring at large regional scale in the future.

参考文献

[1]ZORMAND S,JAFARI R,KOUPAEI S S.Assessment of PDI,MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands[J].Natural Hazards,2017, 86(2):757-77 [2]XU Yaping,WANG Lei,ROSS KEMTON W,et al.Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of north american land data assimilation system data:A case study in the southeast United States[J].Remote Sensing,2018,10(2):301. [3]高涛涛,殷淑燕,王水霞.基于[WTBX]SPEI指数的秦岭南北地区干旱时空变化特征[J].干旱区地理,2018,41(4):761-770.[GAO Taotao,YIN Shuyan,WANG Shuixia.Temporal and spatial variation characteristics of drought in North and South Qinling Mountains based on [WTBX]SPEI index[J].Arid Land Geography,2018,41(4):761-770.] [4]薛海丽,张钦,唐海萍.近60 a内蒙古不同草原类型区极端气候和干旱时间特征分析[J].干旱区地理,2018,41(4):701-711.[XUE Haili,ZHANG Qin,TANG Haiping.Extreme temperature and drought events in four different grassland areas of Inner Mongolia in recent 60 years[J].Arid Land Geography,2018,41(4):701-711] [5]REZZA S,ISLAM N,RAHMAN M M.Meteorlogical drought monitoring using satellite imagery:A case study on Rajshahi,Naogaon and Jaipurhat of Bangladesh[C].National Conference on Water Resources Engineering,2018. [6]王俊霞,朱秀芳,刘宪锋,等.基于多源数据的河南省农业干旱监测方法研究[J].国土资源遥感,2018,30(1):180-186.[WANG Junxia,ZHU Xiufang,LIU Xianfeng,et al.Research on agriculture drought monitoring method of Henan Province with multisources data[J].Remote Sensing for Land & Resources,2018,30(1):180-186.] [7]蒋慧敏,刘春云,贾健,等.乌鲁木齐地区夏季气象干旱的变化特征及成因分析[J].干旱区地理,2018,41(4):693-700[JIANG Huimin,LIU Chunyun,JIA Jian,et al.Characteristics and causes of meteorological drought in summer in Urumqi[J].Arid Land Geography,2018,41(4):693-700] [8]谢培,顾艳玲,张玉虎,等.1961—2015年新疆降水及干旱特征分析[J].干旱区地理,2017,40(2):332-339[XIE Pei,GU Yanling ZHANG Yuhu,et al.Characteristics of precipitation and drought in Xinjiang during the past 1961—2015 years[J].Arid Land Geography,2017,40(2):332-339 ] [9]DU Lingtong,SONG Naiping,LIU Ke,et al.Comparison of two simulation methods of the temperature vegetation dryness Index (TVDI) for drought monitoring in semiarid regions of China[J].Remote Sensing,2017,9(2):19. [10]LIU Ying,YUE Hui.The temperature vegetation dryness index (TVDI) based on biparabolic NDVITs space and gradientbased structural similarity (GSSIM) for longterm drought assessment across Shaanxi Province, China (2000—2016)[J].Remote Sensing,2018,10(6):959. [11]SANDHOLT I,RASMUSSEN K,ANDERSEN J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J].Remote Sensing of Environment,2002,79(2):213-224. [12]TAGESSON T,HORISON S,NIETO H,et al.Disaggregation of SMOS soil moisture over West Africa using the temperature and vegetation dryness index based on SEVIRI land surface parameters[J].Remote Sensing of Environment,2018,206:424-441. [13]HE Dong,YI Guihua,ZHANG Tingbin,et al.Temporal and spatial characteristics of EVI and its response to climatic factors in recent 16 years based on grey relational analysis in inner mongolia autonomous region,China[J].Remote Sensing,2018,10(6):961. [14]ZHAO Shuhe,CONG Dianmin,HE Kexun,et al.Spatialtemporal variation of drought in China from 1982 to 2010 based on a modified Temperature Vegetation Drought Index (mTVDI)[J].Scientific Reports,2017,7(1):17473. [15]SCHIRMBECK LW,FONTANA DC,SCHIMBECK J.Two approaches to calculate TVDI in humid subtropical climate of southern Brazil[J].Scientia Agricola,2018,75(2):111-120. [16]ZHU Wenbin,JIA Shaofeng,LV Aifeng.A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring[J].Remote Sensing of Environment,2017,200:1-17. [17]YANG Ruowen,WANG Hai,HU Jinming,et al.An improved temperature vegetation dryness index (iTVDI) and its applicability to drought monitoring[J].Journal of Mountain Science,2017,14(11):2284-2294. [18]刘艳伟,王淑莹,焦忠帅,等.基于温度植被干旱指数法(TVDI)的朝阳县干旱监测[J].浙江农业学报,2018,30(1):129-136.[LIU Yanwei,WANG Shuying,JIAO Zhongshuai,et al.Monitoring drought in Chaoyang County of Liaoning Province using temperature vegetation drought index (TVDI)[J].Acta Agriculturae Zhejiangensis,2018,30(1):129-136.] [19]葛少青,张剑,孙文,等.三种干旱指数在干旱区沼泽湿地土壤水分遥感反演中的应用[J].生态学报,2018,38(7):2299-2307.[GE Shaoqing,ZHANG Jian,SUN Wen,et al.Application of three drought indexes in soil moisture inversion using remote sensing in marsh wetlands of arid area[J].Acta Ecologica Sinica,2018,38(7):2299-2307.] [20]何宝忠,丁建丽,李焕等.新疆植被物候时空变化特征[J].生态学报,2018,38(6):2139-2155.[HE Baozhong,DING Jianli,LI Huan,et al.Spatiotemporal variation of vegetation phenology in Xinjiang[J].Acta Ecologica Sinica,2018,38(6):2139-2155.] [21]TESTA S,SOUDANI K,BOSCHENI K,et al.MODISderived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests[J].International Journal of Applied Earth Observation & Geoinformation,2018,64:132-144. [22]ZHAO Xiaoqian,SU Yanjun,HU Tianyu,et al.A global corrected SRTM DEM product for vegetated areas[J].Remote Sensing Letters,2018,9(4):393-402. [23]CAO Yueqian,ZHANG Wu,WANG Wenjing.Evaluation of TRMM 3B43 data over the Yangtze River Delta of China[J].Scientific Reports,2018,8(1):5290. [24]HUETE A,DIDAN K,MIURA T,et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J].Remote Sensing of Environment,2002,83(1):195-213. [25]PRICE J C.Using spatial context in satellite data to infer regional scale evapotranspiration[J].IEEE Transactions on Geoscience & Remote Sensing,1990,28(5):940-948.
文章导航

/