地球信息科学

塔里木胡杨自然保护区湿地景观季相分析

展开
  • 1 农业农村部农业大数据重点实验室,中国农业科学院农业信息研究所,北京100081;
    2 新疆林业科学院造林治沙所,新疆 乌鲁木齐830000;3. 中国林科院荒漠化研究所,北京100091

网络出版日期: 2019-01-16

基金资助

国家自然科学基金(31770764),国家重点研发计划(2017YFC0504502),中央级公益性科研院所基本科研业务费专项资金(Y2018ZK09,Y2016ZK18)

Seasonal analysis of wetland landscape in Tarim Populous euphratica Nature Reserve

Expand
  • 1  Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs,Agricultural information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 
    2  Institute of Afforestation and Desertification Control, Xinjiang Academy of Forestry Sciences, Urumqi 830000, Xinjiang, China; 
    3  Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China.

Online published: 2019-01-16

摘要

湿地景观变化是区域生态环境的一个重要指示器,其扩张和萎缩对区域生态环境将产生重要影响。为了准确评估新疆塔里木胡杨国家自然保护区湿地景观在枯水季与丰水季的变化规律,研究采用遥感手段,通过分析同一年份枯水期与丰水期二期遥感数据,对保护区湿地景观格局进行分析。研究得出:(1)保护区湿地面积约为13万ha,沼泽湿地是研究区湿地的主要类型,约占湿地总面积的74%,河流湿地与人工湿地占比约为13%。(2)丰水期与枯水期相比,湿地各类型面积(除人工湿地外)均呈现增加趋势。河流湿地变动最为剧烈,其中永久性河流变动幅度最大,达84.37%;沼泽湿地面积变化幅度较小,人工湿地面积基本没有变化。造成湿地面积年内变动主要是由于塔里木河中游来水量季节分配不均,洪、枯悬殊以及农业用水时段的差异造成的。(3)丰水期与枯水期相比,共有7791.25 ha发生了类型转化,其中其它类型转化为湿地占50.55%,草本沼泽面积发生转化占26.24%。季节性或间歇性河流变动最为激烈,有94.2%的面积发生转化。研究得到了保护区湿地景观格局在同一年内不同时间和空间上的变化,揭示了湿地景观季相变化动因,为保护区湿地保护政策的提出提供科学依据。

本文引用格式

刘洪霞,管文轲,曹晓明, 张谱, 张和钰,吴天忠,李志鹏,冯益明 . 塔里木胡杨自然保护区湿地景观季相分析[J]. 干旱区地理, 2019 , 42(1) : 130 -136 . DOI: 10.12118/j.issn.1000-6060.2019.01.15

Abstract

The change of wetland landscape is an important indicator of regional ecological environment, and it will have important effects on the regional ecological environment too. In order to accurately evaluate the change law of wetland landscape in the Tarim Populous euphratica Nature Reserve (hereafter referred it to as Reserve) in Xinjiang, the wetland landscape pattern of the Reserve was analyzed by adopting remotely sensed data in the dry and the wet seasons in the same year. It was found that the wetland area in the Reserve was about 130 million ha., and the marsh wetland was the main type of the wetlands in the studied area, accounting for about 74% of the total wetland area, and both the river wetland and the constructed wetland shared 13% each of the total wetland area. Relative to the dry season, the total area of different types of wetlands (except for the constructed wetland) showed an increase trend in the wet season. The river wetland displayed the most significant area variation, of which the permanent river wetland showed the largest change scope, reaching up to 84.37%; while the marsh wetland area gave relatively small change scope, and the constructed wetland area kept stable. The main reasons causing the variation of wetland area during one year were the uneven spatial and temporal distribution of water resources, the disparity between the wet season and the dry season, and the agricultural water usage in the Reserve. From the land type conversion perspective, the areas with land type transformed were added up to 7791.25 ha in the wet season, of which the areas transformed from other land types into the wetland type accounted for 50.55%, and the areas transformed from the herbaceous marsh into other land types accounted for 26.24%. The change of the seasonal or intermittent rivers was the most dramatic, resulting a variation of their 94.2% areas. In summary, the dynamics of wetland landscape in the Reserve in different time and region in one year were obtained in this study, which helped provide some scientific data for the wetland protection policy in the Reserve.

参考文献

[1] DAVIDSON 1 N, COATES 2 D. The Ramsar Convention and Synergies for Operationalizing the Convention on Biological Diversity's Ecosystem Approach for Wetland Conservation and Wise Use[J]. Journal of International Wildlife Law & Policy, 2011, 14(3): 199-205.
[2] 颜凤芹, 于灵雪, 杨朝斌, 等. 基于Landsat8影像的湿地信息提取最佳波段组合[J]. 地球环境学报, 2014, 5(5): 339-352. [YAN Feng-yan, YU Ling-xue, YANG Chao-bin, et al. The optimal bands combination in wetland based on landsat 8 image[J]. Journal of earth environment, 2014, 5(5): 339-352.]
[3] LIOUBIMTSEVA E, HENEBRY G M. Climate and environmental change in arid Central Asia-Impacts, vulnerability and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963-977.
[4] KINGFORD R T, THOMAS R F. Use of satellite image analysis to track wetland loss on the Murrumbidgee River flood plain in arid Australia, 1975-1998[J]. Water Science and Technology, 2002, 45(11): 45-53.
[5] DING S, LIANG G. Impacts of human activity and natural change on the wetland landscape pattern along the Yellow River in Henan Province[J]. Journal of Geographical Sciences, 2004, 14(3): 339-348.
[6] 丁圣彦, 梁国付. 近20年来河南沿黄湿地景观格局演化[J]. 地理学报, 2004, 59(5): 653-661.[DING Sheng-yan, LIANG Guo-fu. Landscape pattern change of regional wetland along the Yellow River in Henan Province in the last two decades[J]. Acta Geographica Sinica, 2004, 59(5): 653-661.]
[7] 卢晓宁, 邓伟, 张树清. 近50a来霍林河流域下游沿岸湿地景观格局演变[J]. 干旱区地理, 2006, 29(6): 828-837. [LU Xiao-ning, DENG Wei, ZHANG Shu-qing. Evaluation Patterns of the Wetland Landscapes along the Lower Reaches of the Huolin River since Recent 50 Years[J]. Arid Land Geography, 2006, 29(6): 828-837.]
[8] 李景宜. 黄渭洛三河汇流区湿地景观变化[J]. 干旱区地理, 2008, 31(2): 210-214. [LI Jing-yi. Landscape changes of wetland in confluent area of the Yellow River, Weihe River and Beiluohe River[J]. Arid Land Geography, 2008, 31(2): 210-214.]
[9] WANG Z, SONG K, MA W, et al. Loss and Fragmentation of Marshes in the Sanjiang Plain, Northeast China, 1954-2005[J]. Wetlands, 2011, 31(5): 945-954.
[10] WIGAND C, CARLISLE B, SMITH J, et al. Development and validation of rapid assessment indices of condition for coastal tidal wetlands in southern New England, USA[J]. Environmental Monitoring and Assessment, 2011, 182(1): 31-46.
[11] SIMS K R E, SCHUETZ J. Local regulation and land-use change: The effects of wetlands bylaws in Massachusetts[J]. Regional Science and Urban Economics, 2009, 39(4): 409-421.
[12] CSERHALMI D, NAGY J, KRISTOF D, et al. Changes in a Wetland Ecosystem: A vegetation reconstruction study based on historical panchromatic aerial photographs and succession patterns[J]. Folia Geobotanica, 2011, 46(4): 351-371.
[13] FROHN R C, AUTREY B C, LANE C R, et al. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery[J]. International Journal of Remote Sensing, 2011, 32(5): 1471-1489
[14] 吾拉孜别克·索力坦. 中国湿地资源·新疆卷[M]. 北京: 中国林业出版社, 2015:1-90. [WULAZIBIEKE S. Chinese wetland resource Xinjiang Volume[M]. Beijing: Chinese forestry publishing house, 2015:1-90.]
[15] 王玉丽, 马震. 应用ENVI 软件目视解译TM影像土地利用分类. 现代测绘, 2011, 34(1): 11-13. [WANG Yu-li, MA Zhen. Visual Interpretation TM Image Land Use Classification by Applied the Software of ENVI[J]. Modern Surveying and Mapping, 2011, 34(1): 11-13.]
文章导航

/