气候与水文

慕士塔格山卡尔塔马克冰川补给径流与非冰川补给径流水化学特征及主控因素研究

展开
  • 1 中国科学院青藏高原研究所环境与地表过程实验室, 北京 100101;
    2 中国科学院青藏高原研究所高寒生态学与生物多样性重点实验室, 北京 100101;
    3 中国科学院青藏高原地球科学卓越创新中心, 北京 100101;
    4 中国科学院大学, 北京 100049
闫崇宇(1991-),男,中国科学院青藏高原研究所研究生在读,硕士,研究方向为水文与水环境.E-mail:yanchongyu@itpcas.ac.cn

收稿日期: 2018-07-17

  修回日期: 2018-09-21

基金资助

国家自然科学基金(41422101,41371087)

Hydrochemical characteristics and controlling factors of the glacierized and non-glacier runoff in the Kaltamac Glacier area of Muztagata Mountain

Expand
  • 1 Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
    2 Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
    3 CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China;
    4 University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-07-17

  Revised date: 2018-09-21

摘要

2016年7~8月对慕士塔格山卡尔塔马克冰川补给径流与非冰川补给径流进行了采样分析,通过统计分析、主成分分析、Piper图、Gibbs图、正演模型等方法分析了冰川补给径流和非冰川补给径流的水化学特征及其主控因素。结果表明:冰川补给径流和非冰川补给径流两种水体均呈碱性,水化学类型皆为Ca2+-SO42--HCO3-,但冰川补给径流和非冰川补给径流的pH值、ECTDS均存在显著差异(p<0.05),主要离子浓度间均存在极显著差异(p<0.01)。冰川补给径流中所有离子具有同源性,而非冰川补给径流NO3-显示出与其它离子来源不同。正演模型结果显示,大气输入、硅酸盐风化、碳酸盐风化和蒸发岩溶解对冰川补给径流和非冰川补给径流中离子浓度的贡献率分别为10.47%、0.55%、65.61%、23.37%和1.52%、19.57%、60.37%、18.54%。在冰川补给径流中,碳酸盐风化对径流中离子浓度的贡献占主导地位,蒸发岩溶解占次要地位;在非冰川补给径流中,碳酸盐风化亦占主要支配地位,而硅酸盐风化占次要地位。两者差异的原因是硅酸盐风化相比蒸发岩溶解更难进行,冰川补给径流中水岩相互作用时间较短,故硅酸盐风化贡献率较低;而非冰川补给径流经过更充分的水岩相互作用,故硅酸盐风化贡献率较高。其成果可为西部地区水资源管理应用提供参考。

本文引用格式

闫崇宇, 曾辰, 史晓楠, 王冠星, 张凡 . 慕士塔格山卡尔塔马克冰川补给径流与非冰川补给径流水化学特征及主控因素研究[J]. 干旱区地理, 2018 , 41(6) : 1214 -1224 . DOI: 10.12118/j.issn.1000-6060.2018.06.09

Abstract

Water samples of the Kaltamac glacier runoff and the non-glacier runoff were collected during July to August in 2016,meanwhile,statistically analysis,principle component analysis,Piper figure,Gibbs figure and forward model were conducted thereafter to analyze the hydrochemistry characteristics and identify the major ion sources of the two runoff water samples.Results showed that the two types of water are both alkaline,and the hydrochemical types included Ca2+-HCO3--SO42-.However,pH,EC,TDS and major ions of the two water samples showed significant differences that the non-glacier runoff always showed higher values than the glacier runoff.All the ions showed similar source in glacier runoff while NO3- showed different source in the non-glacier runoff compared to other ions.Result of forward model showed that the contribution of atmospheric input,silicate weathering,carbonate weathering,and evaporite dissolution to the ion concentrations of the glacier and the non-glacier runoff were 10.47%,0.55%,65.61%,23.37% and 1.52%,19.57%,60.37%,18.54%,respectively.It can be seen that the ion concentrations of the glacier runoff was mainly affected by carbonate weathering,followed by the dissolution of evaporite; the ion concentrations of the non-glacier runoff was mainly affected by carbonate weathering,followed by the silicate weathering.The reason for the difference is that silicate weathering was more difficult to proceed than evaporite dissolution.The water-rock interaction time of the glacier runoff was shorter,so the contribution of silicates weathering was lower; while the water-rock interaction time of the non-glacier runoff was longer,so that the silicate weathering contribution is higher.This study can provide guidelines for water resource management for western regions in China.

参考文献

[1] 王晓艳,李忠勤,周平,等.天山哈密榆树沟流域春洪期水化学特征及其控制因素研究[J].干旱区地理,2014,37(5):922-930.[WANG Xiaoyan,LI Zhongqin,ZHOU Ping,et al.River water chemical characteristics and controls during the spring flood period in Yushugou Basin,Hami,Eastern Tianshan Mountains,China[J].Arid Land Geography, 2014,37(5):922-930.]
[2] 朱海勇,陈永金,刘加珍,等.塔里木河中下游地下水化学及其演变特征分析[J].干旱区地理, 2013,36(1):8-18.[ZHU Haiyong,CHEN Yongjin,LIU Jiazhen,et al.Variation and evolution of groundwater chemistry in the middle and lower reaches of the Tarim River[J].Arid Land Geography,2013,36(1):8-18.]
[3] 郜银梁,陈军锋,张成才,等.黑河中游灌区水化学空间变异特征[J].干旱区地理,2011,34(4):575-583.[GAO Yinliang,CHEN Junfeng,ZHANG Chencai,et al.Hydrochemical characteristics of the irrigation area in the middle reaches of the Heihe River Basin[J].Arid Land Geography,2011,34(4):575-583.]
[4] 年福华,李新.中国干旱区地理水文研究概述[J].干旱区地理,2000,23(1):91-95.[NIAN Fuhua,LI Xin.A comprehensive review of the research on hydrography in arid lands in China[J].Arid Land Geography,2000,23(1):91-95.]
[5] BROWN G H.Glacier meltwater hydrochemistry[J].Applied Geochemistry,2002,17(7):855-883.
[6] HODSON A,PORTER P,LOWE A,et al.Chemical denudation and silicate weathering in Himalayan glacier basins:Batura Glacier,Pakistan[J].Journal of Hydrology,2002,262(1):193-208.
[7] PRESTRUD ANDERSON S,DREVER J I,HUMPHREY N F.Chemical weathering in glacial environments[J].Geology,1997,25(5):399.
[8] SINGH A K,HASNAIN S I.Aspects of weathering and solute acquisition processes controlling chemistry of sub-alpine proglacial streams of Garhwal Himalaya,India[J].Hydrological Processes,2002,16(16):835-849.
[9] SHARP M,TRANTER M,BROWN G H,et al.Rates of chemical denudation and CO drawdown in a glacier-covered alpine catchment[J].Ugeskr Laeger,1995,141(29):2007-2009.
[10] 冯芳,冯起,刘贤德,等.天山乌鲁木齐河源1号冰川融水径流水化学特征研究[J].冰川冻土,2014,36(1):183-191.[FENG Fang,FENG Qi,LIU Xiande,et al.A study of hydrochemical characteristics of meltwater runoff of the Urumqi No.1 Glacier,Tianshan Mountain[J].Journal of Glaciology & Geocryology,2014,36(1):183-191.]
[11] 施雅风.2050年前气候变暖冰川萎缩对水资源影响情景预估[J].冰川冻土,2001,23(4):333-341.[SHI Yafeng.Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050[J]. Journal of Glaciolgy & Geocryology,2001,23(4):333-341.]
[12] 沈永平,苏宏超,王国亚,等.新疆冰川、积雪对气候变化的响应(Ⅰ):水文效应[J].冰川冻土,2013,35(3):513-527.[SHEN Yongping,SU Hongchao,WANG Guoya,et al.The responses of glaciers and snow cover to climate change in Xinjiang(Ⅰ):Hydrological effects[J].Journal of Glaciology & Geocryology,2013,35(3):513-527.]
[13] 毛炜峄,樊静,沈永平,等.近50 a来新疆区域与天山典型流域极端洪水变化特征及其对气候变化的响应[J].冰川冻土,2012,34(5):1037-1046.[MAO Weiyi,FAN Jing,SHEN Yongping,et al.Variations of extreme flood of the rivers in Xinjiang region and some typical watersheds from Tianshan Mountain and their response to climate change in recent 50 years[J].Journal of Glaciology & Geocryology,2012,34(5):1037-1046.]
[14] 李忠勤,李开明,王林.新疆冰川近期变化及其对水资源的影响研究[J].第四纪研究,2010,30(1):96-106.[LI Zhongqin,LI Kaiming,WANG Lin.Study on recent glacier changes and their impact on water resources in Xinjiang[J].Quaternary Sciences,2010,30(1):96-106.]
[15] YDE J C,RIGERKUSK M,CHRISTIANSEN H H,et al.Hydrochemical characteristics of bulk meltwater from an entire ablation season,Longyearbreen,Svalbard[J].Journal of Glaciology,2008,54(185):259-272.
[16] LIU F,WILLIAMS M,SUN J,et al.Hydrochemical process and hydrological separation at the headwaters of the Urumqi River,Tianshan Mountains,China[J].Journal of Glaciolgy & Geocryology,1999,21(4):362-370.
[17] STUMPF A R,MADDEN M E E,SOREGHAN G S,et al.Glacier meltwater stream chemistry in Wright and Taylor Valleys,Antarctica:Significant roles of drift,dust and biological processes in chemical weathering in a polar climate[J].Chemical Geology,2012,322-323:79-90.
[18] PRIYA N,THAYYEN R J,RAMANATHAN A L,et al. Hydrochemistry and dissolved solute load of meltwater in a catchment of a cold-arid trans-Himalayan region of Ladakh over an entire melting period[J]. Hydrology Research,2016,66(1):111-125.
[19] 武小波,李全莲,宋高举,等.祁连山七一冰川融水化学组成及演化特征[J].环境科学,2008,29(3):613-618.[WU Xiaobo,LI Quanlian,SONG Gaoju,et al.Hydrochemical characteristics and evolution of runoff at Qiyi Qlacier,Qilian Mountain[J].Environment Science,2008,29(3):613-618.]
[20] 赵爱芳.天山托木尔峰青冰滩72号冰川径流水化学特征研究[D].兰州:西北师范大学,2013.[ZHAO Aifang.Hydrochemical characteristics in the glacier No.72 of Qingbingtan,Tomur Peak,Tianshan Mountain[J].Lanzhou:Northwest Normal University,2013.]
[21] 赵华标,姚檀栋,徐柏青.慕士塔格卡尔塔马克冰川作用区的水文与水化学特征[J].冰川冻土,2006, 28(2):269-275.[ZHAO Huabiao,YAO Tandong,XU Baiqing.Hydrological and hydrochemical features of the Kartamak glacier area in Muztag Ata[J].Journal of Glaciology & Geocryology,2006,28(2):269-275.]
[22] 施雅风.中国冰川与环境:现在、过去和未来[M].北京:科学出版社,2000.[SHI Yafeng.Glacier and environment in China:Present,past and future[M].Beijing:Science Press,2000.]
[23] 苏珍,刘时银,王志超.慕士塔格山和公格尔山的现代冰川[J].自然资源学报,1989,16(3):241-246.[SU Zhen,LIU Shiyin,WANG Zhichao.Modern glaciers of MT. Muztag and MT. Kongur[J].Journal of Natural Resources,1989,16(3):241-246.]
[24] 康磊,校培喜,高晓峰,等.西昆仑慕士塔格岩体的岩石地球化学特征、岩石成因及其构造意义[J].地质通报,2012,31(12):2001-2014.[KANG Lei,XIAO Peixi,GAO Xiaofeng,et al.Geochemical characteristics and petrogenesis of Muztagata intrusion in western Kunlun orogenic belt and their tectonic significance[J].Geological Bulletin of China,2012,31(12):2001-2014.]
[25] 何晓波,丁永建,刘时银,等.慕士塔格卡尔塔马克冰川水文观测与特征分析[J].冰川冻土,2005,27(2):262-268.[HE Xiaobo,DING Yongjian,LIU Shiyin,et al.Obsevation and analyses of hydrological process of the Kaltamak glacier in Muztag Ata[J].Journal of Glaciology & Geocryology,2005,27(2):262-268.]
[26] 王苏民.中国湖泊志[M].北京:科学出版社,1998.[WANG Sumin.Chinese Lakes[M].Beijing,Science Press,1998.]
[27] 李皎,李明慧,方小敏,等.柯鲁克湖水化学特征分析[J].干旱区地理,2015,38(1):43-51.[LI Jiao, LI Minghui,FANG Xiaomin,et al.Hydrochemical characteristics of the Hurleg Lake[J].Arid Land Geography,2015,38(1):43-51.]
[28] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.[WEI Fengying.Statistical diagnosis and prediction technology of modern climate[M].Beijing:Weather Press,2007.]
[29] GARRELS R M.Genesis of some ground waters from igneous rocks[J].Researches in Geochemistry,1967,2.
[30] 王利杰,曾辰,王冠星,等.西藏山南地区沉错湖泊与径流水化学特征及主控因素初探[J].干旱区地理,2017,40(4):737-745.[WANG Lijie,ZENG Chen,WANG Guanxing,et al.Chemical characteristics and impact factors of the Drem-tso Lake and supplying runoff in the southern Tibet[J].Arid Land Geography,2017, 40(4):737-745.]
[31] 李向应.中国西部典型冰川区冰川融水的水文化学特征研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2009.[LI Xiangying.Study on hydro-culturology characteristics of glacial meltwater in typical glacier area in western China[D].Lanzhou:Northwest Institute of Eco-Environment and Resources,CAS,2009.]
[32] GISLASON S R,OELKERS E H,EIRIKSDOTTIR E S,et al.Direct evidence of the feedback between climate and weathering[J].Earth & Planetary Science Letters,2009,277(1):213-222.
[33] ANDERSON S P.Glaciers show direct linkage between erosion rate and chemical weathering fluxes[J].Geomorphology,2005,67(1):147-157.
[34] MA Y X,HUANG H Q,XU J X,et al.Variability of effective discharge for suspended sediment transport in a large semi-arid river basin[J].Journal of Hydrology,2010,388(3):357-369.
[35] 吕婕梅,安艳玲,吴起鑫,等.贵州清水江流域丰水期水化学特征及离子来源分析[J].环境科学,2015,36(5):1565-1572.[LV Jiemei,AN Yanlin,WU Qixin,et al.Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J].Environmental Science,2015,36(5):1565-1572.]
[36] 高坛光,康世昌,张强弓,等.青藏高原纳木错流域河水主要离子化学特征及来源[J].环境科学,2008,29(11):3009-3016.[GAO Tanguang,KANG Shichang,ZHANG Qianggong,et al.Major ionic features and their sources in the Namco Basin over the Tibetan Plateau[J].Environmental Science,2008,29(11):3009-3016.]
[37] NEGREL P,ALLEGRE C J,DUPRE B,et al.Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water:The Congo Basin case[J].Earth & Planetary Science Letters, 1993,120(1-2):59-76.
[38] GAILLARDET J,DUPRE B,ALLEGRE C J,et al.Chemical and physical denudation in the Amazon River Basin[J].Chemical Geology,1997,142(3-4):141-173.
文章导航

/