植被动态变化

新疆天山山区植被变化对气象干旱的响应

  • 吴秀兰 ,
  • 程贺前 ,
  • 佟欣怡 ,
  • 张旭
展开
  • 1.新疆维吾尔自治区气候中心,新疆 乌鲁木齐 830002
    2.乌鲁木齐气象卫星地面站,新疆 乌鲁木齐 830000
吴秀兰(1988-),女,高级工程师,主要从事气象灾害相关研究. E-mail: wuxiulanxj@163.com
张旭(1979-),男,高级工程师,主要从事遥感与应用气象研究. E-mail: zhangxu_home@163.com

收稿日期: 2024-09-05

  修回日期: 2024-12-19

  网络出版日期: 2025-06-18

基金资助

新疆维吾尔自治区自然科学基金项目(2022D01B181);中国气象局创新发展专项(CXFZ2025Q023);新疆气象局创新项目(MS202205)

Response of vegetation changes to meteorological drought in Tianshan Mountains, Xinjiang

  • WU Xiulan ,
  • CHENG Heqian ,
  • TONG Xinyi ,
  • ZHANG Xu
Expand
  • 1. Xinjiang Climate Center, Urumqi 830002, Xinjiang, China
    2. Urumqi Meteorological Satellite Ground Station, Urumqi 830000, Xinjiang, China

Received date: 2024-09-05

  Revised date: 2024-12-19

  Online published: 2025-06-18

摘要

在全球气候变化背景下,研究干旱对植被的影响对于生态保护和可持续发展具有重要意义。利用2001—2023年的气象干旱综合指数(Meteorological drought composite index,MCI)和归一化植被指数(Normalized difference vegetation index,NDVI)数据,探讨了天山山区植被在生长季(4—10月)的时空动态特征,并揭示了其对气象干旱胁迫的响应机制。结果表明:(1) 天山山区植被NDVI总体呈缓慢增加趋势,但自2019年起出现下降倾向。(2) MCI呈波动变化但总体表现出缓慢降低趋势,尤其自2020年之后,新疆天山山区的干旱情况明显加剧,特别是在夏季,干旱程度尤为严重,MCI大幅下降。(3) MCI与NDVI之间呈中等正相关关系,显示出气象干旱对植被生长具有显著影响,植被覆盖度呈现显著的季节性和空间异质性,而干旱程度则整体呈现出西部较轻、中部加剧、东部最重的趋势。(4) 不同区域植被变化对气象干旱的响应存在差异,其中西南部的乌恰县气象干旱对植被覆盖度的影响最为显著。研究结果为理解天山山区气候变化、生态对气象干旱的响应以及制定干旱缓解策略提供了科学依据。

本文引用格式

吴秀兰 , 程贺前 , 佟欣怡 , 张旭 . 新疆天山山区植被变化对气象干旱的响应[J]. 干旱区地理, 2025 , 48(6) : 985 -994 . DOI: 10.12118/j.issn.1000-6060.2024.536

Abstract

Considering the global climate change trends, understanding the impact of drought on vegetation is crucial for ecological protection and sustainable development. This study analyzes the spatiotemporal variation of vegetation and its response to meteorological drought within the Tianshan Mountains in Xinjiang, China during the growing season (April-October) for the period of 2001—2023. Using the meteorological drought composite index (MCI) and normalized difference vegetation index (NDVI), we examine the trends in vegetation dynamics and drought conditions. The results indicate the following. (1) The NDVI values in Tianshan Mountains exhibited a slow increasing trend overall; however, a decline was observed since 2019. (2) The MCI values fluctuated but generally exhibited a slow decreasing trend, with a significant intensification of drought conditions in Xinjiang’s Tianshan Mountains region since 2020, particularly in summer, when MCI values dropped sharply. (3) A moderate positive correlation between MCI and NDVI suggested that meteorological drought significantly affected vegetation growth. Vegetation coverage exhibited notable seasonal and spatial heterogeneity, while drought severity followed a gradient—mildest in the west, intensifying in the central region, and most severe in the east. (4) The vegetation response to meteorological drought varied across different regions, with the most pronounced impact observed in the Wuqia County in the southwest. The results provide a scientific foundation for understanding climate change in Tianshan Mountains, assessing ecological responses to meteorological drought, and formulating effective drought mitigation strategies.

参考文献

[1] 王雨晴, 王菜林, 布仁吉日嘎拉, 等. 内蒙古典型植被区NDVI演化对干旱事件的响应研究[J]. 华北水利水电大学学报(自然科学版), 2023, 44(3): 44-52.
  [Wang Yuqing, Wang Cailin, Burenji Gala, et al. Response of NDVI index evolution to drought events in typical vegetation areas of Inner Mongolia[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2023, 44(3): 44-52. ]
[2] Du J Q, Quan Z J, Fang S F, et al. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform[J]. Environmental Science and Pollution Research International, 2020, 27(1): 1144-1159.
[3] Tang L, He M Z, Xu H, et al. Validation of vegetation coverage and NDVI based on UAV remote sensing method and its response to hydrothermal gradient[J]. The Journal of Applied Ecology, 2020, 31(1): 35-44.
[4] Zheng H F, Shen G Q, He X Y, et al. Spatial assessment of vegetation vulnerability to accumulated drought in northeast China[J]. Regional Environmental Change, 2015, 15(8): 1639-1650.
[5] Nash M, Wickham J, Christensen J, et al. Changes in landscape greenness and climatic factors over 25 years (1989—2013) in the USA[J]. Remote Sensing, 2017, 9(3): 295, doi: 10.3390/rs9030295.
[6] Gong Z N, Zhao S Y, Gu J Z. Correlation analysis between vegetation coverage and climate drought conditions in north China during 2001—2013[J]. Journal of Geographical Sciences, 2017, 27(2): 143-160.
[7] 朱光磊. 嫩江流域植被动态变化及其对气象干旱的响应研究[D]. 延吉: 延边大学, 2021.
  [Zhu Guanglei. Study on dynamic change of vegetation and its response to meteorological drought in Nenjiang River Basin[D]. Yanji: Yanbian University, 2021. ]
[8] 皮贵宁, 贺中华, 张浪, 等. 区域植被对不同时间尺度气象干旱的响应——以贵州省为例[J]. 水土保持研究, 2022, 29(4): 277-284, 291.
  [Pi Guining, He Zhonghua, Zhang Lang, et al. Response of regional vegetation to meteorological drought at different time scales: A case study of Guizhou Province[J]. Research of Soil and Water Conservation, 2022, 29(4): 277-284, 291. ]
[9] 徐泽华. 山东省植被时空变化特征及其对气象干旱指数的响应[D]. 济南: 山东师范大学, 2019.
  [Xu Zehua. Characteristics of temporal-spatial variation of vegetation in Shandong Province and its response to meteorological drought index[D]. Jinan: Shandong Normal University, 2019. ]
[10] 魏彦强, 芦海燕, 王金牛, 等. 近35年青藏高原植被带变化对气候变化及人类活动的响应[J]. 草业科学, 2019, 36(4): 1163-1176, 927.
  [Wei Yanqiang, Lu Haiyan, Wang Jinniu, et al. Responses of vegetation zones, in the Qinghai-Tibetan Plateau, to climate change and anthropogenic influences over the last 35 years[J]. Pratacultural Science, 2019, 36(4): 1163-1176, 927. ]
[11] 尤南山, 蒙吉军, 孙慕天. 2000—2015年黑河流域中上游NDVI时空变化及其与气候的关系[J]. 北京大学学报
  ( 自然科学版), 2019, 55(1) : 171-181.
  [You Nanshan, Meng Jijun, Sun Mutian. Spatio-temporal change of NDVI and its relationship with climate in the upper and middle reaches of Heihe River Basin from 2000 to 2015[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(1): 171-181. ]
[12] 黄云博, 张翀, 王玉丹. 渭河流域植被覆盖变化趋势及其对土壤干湿状况的响应[J]. 干旱区地理, 2024, 47(5): 841-849.
  [Huang Yunbo, Zhang Chong, Wang Yudan. Change trend of vegetation cover and its response to soilmoisture status in Weihe River Basin[J]. Arid Land Geography, 2024, 47(5): 841-849. ]
[13] 陈春波, 李刚勇, 彭建. 1981—2018年新疆草地归一化植被指数时空特征及其对气候变化的响应[J]. 生态学报, 2023, 43(4): 1537-1552.
  [Chen Chunbo, Li Gangyong, Peng Jian. Spatio-temporal characteristics of Xinjiang grassland NDVI and its response to climate change from 1981 to 2018[J]. Acta Ecologica Sinica, 2023, 43(4): 1537-1552. ]
[14] 张华, 徐存刚, 王浩. 2001—2018年西北地区植被变化对气象干旱的响应[J]. 地理科学, 2020, 40(6): 1029-1038.
  [Zhang Hua, Xu Cungang, Wang Hao. Response of vegetation change to meteorological drought in northwest China from 2001 to 2018[J]. Scientia Geographica Sinica, 2020, 40(6): 1029-1038. ]
[15] 陈家宁, 孙怀卫, 王建鹏, 等. 综合气象干旱指数改进及其适用性分析[J]. 农业工程学报, 2020, 36(16): 71-77.
  [Chen Jianing, Sun Huaiwei, Wang Jianpeng, et al. Improvement of comprehensive meteorological drought index and its applicability analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 71-77. ]
[16] 吴秀兰, 段春锋, 玛依拉·买买提艾力, 等. 基于MCI的新疆近60 a干旱时空特征分析[J]. 干旱区研究, 2022, 39(1): 75-83.
  [Wu Xiulan, Duan Chunfeng, Maimaitiaili Mayila, et al. Analysis of the temporal-spatial variation characteristics of drought in the Xinjiang based on the meteorological drought comprehensive index[J]. Arid Zone Research, 2022, 39(1): 75-83. ]
[17] 罗晓玲, 赵慧华, 杨梅, 等. 基于MCI的河西走廊东部近60年干旱特征及对厄尔尼诺事件的响应[J/OL]. 沙漠与绿洲气象. [2024-11-20]. http://kns.cnki.net/kcms/detail/65.1265.p.20241114.1549.016.html.
  [Luo Xiaoling, Zhao Huihua, Yang Mei, et al. Characteristics of drought and response to El Ni?o events over the last 60 years in eastern Hexi Corridor based on MCI[J/OL]. Desert and Oasis Meteorology. [2024-11-20]. http://kns.cnki.net/kcms/detail/65.1265.p.202411 14.1549.016.html.]
[18] 许丹, 龙俐, 张东海, 等. 基于MCI干旱综合指数的贵州省干旱时空分布及灾情变化特征[J]. 干旱气象, 2023, 41(6): 897-909.
  [Xu Dan, Long Li, Zhang Donghai, et al. Drought and disaster variation characteristics in Guizhou based on meteorological drought composite index[J]. Journal of Arid Meteorology, 2023, 41(6): 897-909. ]
[19] 魏文寿, 袁玉江, 喻树龙, 等. 中国天山山区235 a气候变化及降水趋势预测[J]. 中国沙漠, 2008, 28(5): 803-808.
  [Wei Wenshou, Yuan Yujiang, Yu Shulong, et al. Climate change in recent 235 years and trend prediction in Tianshan Mountainous area[J]. Journal of Desert Research, 2008, 28(5): 803-808. ]
[20] 吴秀兰, 张婧莉, 余行杰, 等. 新疆天山山区干旱灾害综合风险评估与区划[J]. 气象与环境学报, 2022, 38(4): 161-167.
  [Wu Xiulan, Zhang Jingli, Yu Xingjie, et al. Comprehensive risk assessment and zoning of drought disasters in Tianshan Mountains of Xinjiang, Xinjiang Uygur Autonomous Region[J]. Journal of Meteorology and Environment, 2022, 38(4): 161-167. ]
[21] 郭冬, 吐尔逊·哈斯木, 吴秀兰, 等. 四种气象干旱指数在新疆区域适用性研究[J]. 沙漠与绿洲气象, 2022, 16(3): 90-101.
  [Guo Dong, Hasimu Tursun, Wu Xiulan, et al. Applicability of four meteorological drought indices in Xinjiang[J]. Desert and Oasis Meteorology, 2022, 16(3): 90-101. ]
[22] 张存杰, 刘海波, 宋艳玲, 等. GB/T20481-2017. 气象干旱等级[S]. 北京: 中国标准出版社, 2017.
  [Zhang Cunjie, Liu Haibo, Song Yanling, et al. GB/T20481-2017. Classification of meteorological drought[S]. Beijing: China Standards Press, 2017. ]
[23] 陈淑君, 许国昌, 吕志平, 等. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752.
  [Chen Shujun, Xu Guochang, Lü Zhiping, et al. Spatiotemporal variations of fractional vegetation cover and its response toclimate change and urbanization in China[J]. Arid Land Geography, 2023, 46(5): 742-752. ]
文章导航

/