未来多情景下柯柯牙工程区水资源脆弱性评价及预测
收稿日期: 2024-03-16
修回日期: 2024-07-30
网络出版日期: 2025-04-18
基金资助
山水林田湖草沙一体化保护和修复工程相关关键问题和关键技术研究(AKSSSXM2022620)
Assessment and prediction of water resource vulnerability in Kekeya area under the future multi-scenario model
Received date: 2024-03-16
Revised date: 2024-07-30
Online published: 2025-04-18
为了客观且科学地评价和管理新疆柯柯牙生态工程区的水资源脆弱性,基于自然、人为及社会经济3方面构建水资源脆弱性评价指标体系,设置现状发展型、经济导向型、资源节约型及绿色协调型4种情景,应用综合模糊评价法、熵权法以及系统动力学模型对区域水资源脆弱性进行评价及预测。结果表明:(1) 2010—2020年研究区水资源脆弱性总体得分为0.466,属中等脆弱。(2) 现状发展型、经济导向型、资源节约型和绿色协调型4种发展情景下的水资源脆弱性均呈现上升趋势,到2035年4种情景下的水资源脆弱值分别为0.512、0.574、0.549、0.511,表明在未来区内水资源供需问题日益严峻,其中资源节约型对缓解水资源供需不平衡的效果最优。该研究探寻柯柯牙工程实施前后水资源的变化特征,提供设置不同发展情景分析了未来水资源脆弱性变化规律,对干旱区绿化工程的实施提供相关理论参考,同时也对当地的水资源可持续发展具有一定的现实意义。
杨雪梅 , 王让会 , 刘春伟 . 未来多情景下柯柯牙工程区水资源脆弱性评价及预测[J]. 干旱区地理, 2025 , 48(4) : 640 -648 . DOI: 10.12118/j.issn.1000-6060.2024.170
With the rapid economic development and the population growth, the fragility of water resources has become a key constraint on the sustainable development of the Kekeya Project Area in Xinjiang, China. Based on natural, anthropogenic and socio-economic factors, an evaluation index system of water resource fragility was constructed incorporating four developmental scenarios: status-quo development, economy orientation, resource conservation, and green coordination. The system dynamics model was employed to assess and predict water resource fragility in the region. Results indicate that from 2010 to 2020, the water fragility of the area decreased with increased water conservation efforts, but overall fragility remained moderate. Of the four development scenarios, simulation results for water resources’ healthy development showed, first, an upward trend for water resources’ future fragility, and, second, that resource conservation scenario will best alleviate imbalance between water supply and demand. Therefore, adjusting economic structure and innovating water-saving technologies can have a positive effect on alleviating water resource fragility. Future development should prioritize not only the economic development of the Kekeya Project Zone, but also increase the intensity of ecological construction to achieve high-quality, sustainable water resource management in the in the region.
[1] | 吕文凯, 周金星, 万龙, 等. 滇东岩溶断陷盆地水资源脆弱性评价[J]. 地球学报, 2021, 42(3): 341-351. |
[Lü Wenkai, Zhou Jinxing, Wan Long, et al. Evaluation of water resources vulnerability in karst faulted basin of eastern Yunnan Province[J]. Acta Geoscientica Sinica, 2021, 42(3): 341-351.] | |
[2] | 杨法暄, 郑乐, 钱会, 等. 基于DPSIR模型的城市水资源脆弱性评价: 以西安市为例[J]. 水资源与水工程学报, 2020, 31(1): 77-84. |
[Yang Faxuan, Zheng Le, Qian Hui, et al. Vulnerability assessment of urban water resources based on DPSIR model: A case study of Xi’an City[J]. Journal of Water Resources and Water Engineering, 2020, 31(1): 77-84.] | |
[3] | 朱逸凡, 何宏, 张文静, 等. 基于DPSIR-TOPSIS模型的长春市水资源脆弱性评价[J]. 水土保持通报, 2022, 42(5): 174-180. |
[Zhu Yifan, He Hong, Zhang Wenjing, et al. Water resource vulnerability assessment of Changchun City based on DPSIR-TOPSIS model[J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 174-180.] | |
[4] | 朱怡娟, 黄建武, 揭毅. 武汉城市圈水资源脆弱性评价[J]. 水资源保护, 2015, 31(2): 59-64. |
[Zhu Yijuan, Huang Jianwu, Jie Yi. Evaluation on water resources vulnerability of Wuhan City circle[J]. Water Resources Protection, 2015, 31(2): 59-64.] | |
[5] | Albinet M, Margat J. Cartographie de la vulnerabilitè a la pollution des nappes d’eau souterraine[J]. Bulletin BRGM 2nd Series, 1970, 3(4): 13-22. |
[6] | 杨飞, 马超, 方华军. 脆弱性研究进展: 从理论研究到综合实践[J]. 生态学报, 2019, 39(2): 441-453. |
[Yang Fei, Ma Chao, Fang Huajun. Research progress on vulnerability: From theoretical research to comprehensive practice[J]. Acid Ecological Sinica, 2019, 39(2): 441-453.] | |
[7] | 唐国平, 李秀彬, 刘燕华. 全球气候变化下水资源脆弱性及其评估方法[J]. 地球科学进展, 2000, 15(3): 313-317. |
[Tang Guoping, Li Xiuping, Liu Yanhua. Assessment method of vulnerability of water resources under global climate change[J]. Advances in Earth Science, 2000, 15(3): 313-317.] | |
[8] | Mirauda D, Ostoich M. Surface water vulnerability assessment applying the integrity model as a decision support system for quality improvement[J]. Environmental Impact Assessment Review, 2011, 31(3): 161-171. |
[9] | Padowski J C, Jawitz J W. Water availability and vulnerability of 225 large cities in the United States[J]. Water Resources Research, 2012, 48(12): 1-16. |
[10] | 刘庆芳, 王小坤, 朱青, 等. 基于“三生”功能的西藏自治区水资源承载力系统耦合关系[J]. 自然资源学报, 2023, 38(6): 1618-1631. |
[Liu Qingfang, Wang Xiaokun, Zhu Qing, et al. Coupling relationship of water resources carrying capacity system in Tibet Autonomous Region based on “production-living-ecological” function[J]. Journal of Natural Resources, 2023, 38(6): 1618-1631.] | |
[11] | 林钟华, 刘丙军, 伍颖婷, 等. 变化环境下珠三角城市群水资源脆弱性评价[J]. 中山大学学报(自然科学版), 2018, 57(6): 14-22. |
[Lin Zhonghua, Liu Bingjun, Wu Yingting, et al. Assessment of water resource vulnerability of the Pearl River Delta metropolitan under environment change[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(6): 14-22.] | |
[12] | 宁理科, 刘海隆, 包安明. 塔里木河流域水资源系统脆弱性定量评价研究[J]. 水土保持通报, 2013, 33(5): 266-270, 304, 309. |
[Ning Like, Liu Hailong, Bao Anming. Quantitative study of water resource system vulnerability in Tarim River Basin[J]. Bulletin of Soil and Water Conservation, 2013, 33(5): 266-270, 304, 309.] | |
[13] | 曹丽娟, 张小平. 基于主成分分析的甘肃省水资源承载力评价[J]. 干旱区地理, 2017, 40(4): 906-912. |
[Cao Lijuan, Zhang Xiaoping. Assessment of water resources carrying capacity in Gansu Province based on principal component analysis[J]. Arid Land Geography, 2017, 40(4): 906-912.] | |
[14] | 高亚, 章恒全. 基于系统动力学的江苏省水资源承载力的仿真与控制[J]. 水资源与水工程学报, 2016, 27(4): 103-109. |
[Gao Ya, Zhang Hengquan. Simulation and control of water resources carrying capacity in Jiangsu Province based on system dynamics[J]. Journal of Water Resources & Water Engineering, 2016, 27(4): 103-109.] | |
[15] | 宗鑫. 基于SD模型的甘肃省水资源承载力及结构性需水预测[J]. 中国农村水利水电, 2021(12): 83-90, 98. |
[Zong Xin. Forecast of water resource carrying capacity and structural water demand in Gansu Province based on SD model[J]. China Rural Water and Hydropower, 2021(12): 83-90, 98.] | |
[16] | 李鹤. 新疆柯柯牙生态工程水资源保障研究[J]. 水资源开发与管理, 2022, 8(7): 10-13, 37. |
[Li He. Study on water resources guarantee of Kekeya ecological project in Xinjiang[J]. Water Resources Development and Management, 2022, 8(7): 10-13, 37.] | |
[17] | 刘雁慧. 重庆市水资源脆弱性评价分析[D]. 重庆: 重庆师范大学, 2019. |
[Liu Yanhui. Evaluation and analysis of water resources vulnerability in Chongqing[D]. Chongqing: Chongqing Normal University, 2019.] | |
[18] | 邹君, 杨玉蓉, 谢小立. 地表水资源脆弱性: 概念、内涵及定量评价[J]. 水土保持通报, 2007, 27(2): 132-135, 145. |
[Zou Jun, Yang Yurong, Xie Xiaoli. Concept of nulnerability of surface water resource and its quantitative assessment[J]. Bulletin of Soil and Water Conservation, 2007, 27(2): 132-135, 145.] | |
[19] | 田静宜, 王新军. 基于熵权模糊物元模型的干旱区水资源承载力研究: 以甘肃民勤县为例[J]. 复旦学报(自然科学版), 2013(1): 86-93. |
[Tian Jingyi, Wang Xinjun. Assessment of the carrying capacity of water resources in arid areas based on an entropy fuzzy matter element model: A case study in Minqin County, Gansu Province[J]. Journal of Fudan University (Natural Science Edition), 2013(1): 86-93.] | |
[20] | 汪顺生, 黄天元, 陈豪, 等. 基于CRITIC赋权的模糊综合评判模型在水质评价中的应用[J]. 水电能源科学, 2018, 36(6): 48-51. |
[Wang Shunsheng, Huang Tianyuan, Chen Hao, et al. Application of fuzzy comprehensive evaluation model based CRITIC weighting in water quality evaluation[J]. Water Resource and Power, 2018, 36(6): 48-51.] | |
[21] | 安强, 魏传江, 贺华翔, 等. 基于模糊综合评价法的河南省中原城市群水资源承载力评价研究[J]. 节水灌溉, 2019(12): 65-71. |
[An Qiang, Wei Chuanjiang, He Huaxiang, et al. Evaluation of water resource carrying capacity in the Central Plains urban agglomeration in Henan Province based on fuzzy comprehensive evaluation method[J]. Water Saving Irrigation, 2019(12): 65-71.] | |
[22] | 国家环保总局,国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2002. |
[State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine. Environmental quality standards for surface water: GB 3838-2002[S]. Beijing: China Environmental Science Press, 2002.] | |
[23] | 宁阳明, 尹发能. 水污染指数法和模糊综合评价法在水质评价中的应用[J]. 河南师范大学学报(自然科学版), 2020, 48(6): 57-63. |
[Ning Yangming, Yin Faneng. Application of water pollution index method and fuzzy comprehensive evaluation method in water quality evaluation[J]. Journal of Henan Normal University (Natural Science Edition), 2020, 48(6): 57-63.] | |
[24] | Wang J H, Jiang D, Gu D F, et al. Prediction of urban water resources carrying capacity in arid area based on SD model[J]. Geography and Territorial Research, 1999, 15(2): 18-22. |
[25] | 凌红波, 徐海量, 乔木, 等. 基于AHP和模糊综合评判的玛纳斯河流域水资源安全评价[J]. 中国沙漠, 2010, 30(4): 989-994. |
[Ling Hongbo, Xu Hailiang, Qiao Mu, et al. Appraisement of water resource security in Manasi River Basin by analytic hierarchy process and fuzzy comprehensive evaluation[J]. Journal of Desert Research, 2010, 30(4): 989-994.] |
/
〈 |
|
〉 |