第三次新疆综合科学考察

天山北坡城市群城市韧性时空演变特征及发展趋势预测

  • 黄思源 ,
  • 周书航 ,
  • 董晔
展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830017
    2.新疆师范大学商学院,新疆 乌鲁木齐 830017
黄思源(1999-),男,硕士研究生,主要从事人文地理学方面的研究. E-mail: huangsiyuan0918@163.com
董晔(1974-),女,教授,主要从事城市经济学、经济地理学方面的研究. E-mail: xj.dongye@163.com

收稿日期: 2024-07-16

  修回日期: 2024-08-30

  网络出版日期: 2025-04-18

基金资助

国家自然科学基金重点项目(42330510)

Spatio-temporal evolution characteristics and development trend prediction of urban resilience of urban agglomeration on the northern slope of Tianshan Mountains

  • HUANG Siyuan ,
  • ZHOU Shuhang ,
  • DONG Ye
Expand
  • 1. College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830017, Xinjiang, China
    2. College of Business, Xinjiang Normal University, Urumqi 830017, Xinjiang, China

Received date: 2024-07-16

  Revised date: 2024-08-30

  Online published: 2025-04-18

摘要

城市群城市韧性建设已成为城市风险治理研究的热点话题。选取2010—2022年天山北坡城市群15个城市面板数据,基于DPSR模型从动态视角出发,从“驱动力-压力-状态-响应”4个维度,构建城市韧性评价指标体系,利用熵值法、核密度分析城市韧性的时空演化特征、借助地理探测器探索主要影响因子、运用灰色预测模型预测未来发展趋势。结果表明:(1) 2010—2022年天山北坡城市群城市韧性有明显提升,当前形成以乌鲁木齐市西部地区为高韧性区、城市群边缘为低韧性区的“核心-边缘”空间格局。(2) 扰动响应能力对城市韧性影响最为显著,随着时间推移,环境管制和生态污染方面影响力开始逐渐增强。(3) 2023—2027年天山北坡城市群城市韧性“核心-边缘”的空间分布格局将会进一步得到巩固,地区间不平衡发展将会进一步加剧。研究结果可为天山北坡城市群发展规划、城市群韧性提升提供理论参考,从而增强城市在面对各种扰动时的适应能力、恢复能力和持续发展的能力。

本文引用格式

黄思源 , 周书航 , 董晔 . 天山北坡城市群城市韧性时空演变特征及发展趋势预测[J]. 干旱区地理, 2025 , 48(4) : 559 -570 . DOI: 10.12118/j.issn.1000-6060.2024.428

Abstract

Building resilience in urban agglomerations has become a key focus in urban risk governance research. This study utilizes panel data from 15 cities in the urban agglomeration on the northern slope of Tianshan Mountains, Xinjiang, China from 2010 to 2022. Based on the DPSR model, an urban resilience evaluation index system is constructed, encompassing four dimensions (driving force, pressure, state, and response) analyzed from a dynamic perspective. The spatial and temporal evolution of urban resilience is assessed using the entropy method and kernel density estimation. Furthermore, the primary influencing factors are identified through geographical detectors, and future development trends are predicted using a grey prediction model. The results indicate that: (1) From 2010 to 2022, the resilience of the urban agglomeration on the northern slope of Tianshan Mountains has significantly improved, forming a spatial pattern characterized by a “core-edge” structure. The western part of Urumqi City has emerged as a high-resilience area, whereas the periphery of the urban agglomeration exhibits lower resilience. (2) When analyzing the factors influencing urban resilience, the response system has consistently exerted a strong impact. Over time, the influence of environmental regulation and ecological pollution indicators has increased. Specifically, the total production value of large-scale industrial enterprises, carbon dioxide emissions, the number of utility model patents, the digital financial inclusion index, and general public budget expenditures have demonstrated a strong long-term effect on urban resilience in this region. (3) For the period 2023—2027, dynamic predictions suggest that the resilience of the urban agglomeration will improve significantly, with cities in the urban agglomeration exhibiting steady growth. Spatially, Urumqi City will continue to lead in resilience levels, further widening interregional disparities. Consequently, the “core-edge” spatial pattern within the region will become more pronounced. These findings provide a theoretical reference for the development planning of urban agglomeration on the northern slope of Tianshan Mountains and the enhancement of urban resilience, thereby strengthening cities’ ability to adapt to, recover from, and sustainably develop in response to various disturbances.

参考文献

[1] 尹建军, 胡静, 黄宇瑄. 长江中游城市群城市韧性时空演化特征及动态预测研究[J]. 长江流域资源与环境, 2023, 32(11): 2312-2325.
  [Yin Jianjun, Hu Jing, Huang Yuxuan. Spatial-temporal evolution characteristics and dynamic prediction of urban resilience in urban agglomerations in diddle reaches of Yangtze River[J]. Resources and Environment in the Yabgtze Basin, 2023, 32(11): 2312-2325.]
[2] Resilience Alliance. Urban resilience research prospectus[M]. Canberra: Csiro, 2007.
[3] Merrow S, Newell J P, Stults M. Defining urban resilience: A review[J]. Landscape and Urban Planning, 2016, 147: 38-49.
[4] 崔鹏, 李德智, 陈红霞, 等. 社区韧性研究述评与展望: 概念、维度和评价[J]. 现代城市研究, 2018(11): 119-125.
  [Cui Peng, Li Dezhi, Chen Hongxia, et al. Research review and prospect of community resilience: Concept, dimension and evaluation[J]. Modern Urban Research, 2018(11): 119-125.]
[5] Spaans M, Waterhout B. Building up resilience in cities worldwide:Rotterdam as participant in the 100 resilient cities programme[J]. Cities, 2017, 61: 109-116.
[6] Berkes F, Ross H. Community resilience: Toward an integrated approach-society[J]. Society & Natural Resources, 2012, 26(1): 5-20.
[7] Bonanno G A, Galea S, Vlahov B D. Psychological resilience after disaster: New York City in the aftermath of the September 11th terrorist attack[J]. Psychological Science, 2010, 17(3): 181-186.
[8] Davis-Street J, Frangos S, Walker B, et al. Addressing adaptive andinherent resilience-lessons learned from hurricane harvey[R]. United Arab Emirates: Society of Petroleum Engineers, 2018.
[9] 赵鹏霞, 朱伟, 王亚飞. 韧性社区评估框架与应急体制机制设计及在雄安新区的构建路径探讨[J]. 中国安全生产科学技术, 2018, 14(7): 12-17.
  [Zhao Pengxia, Zhu Wei, Wang Yafei. Assessment framework and emergency system and mechanism design of resilient community and discussion on its construction path in Xiongan new area[J]. Journal of Safety Science and Technology, 2018, 14(7): 12-17.]
[10] Godschalk D R. Urban hazard mitigation: Creating resilient cities[J]. Natural Hazards Review, 2003, 4(3): 136-143.
[11] 王松茂, 宁文萍, 牛金兰, 等. 黄河流域城市生态韧性时空分异及收敛研究——基于七大城市群61个城市的实证分析[J]. 干旱区地理, 2024, 47(1): 93-103.
  [Wang Songmao, Ning Wenping, Niu Jinlan, et al. Spatiotemporal differentiation and convergence of urban ecological resilience in the Yellow River Basin: An empirical analysis based on 61 cities in seven major urban agglomerations[J]. Arid Land Geography, 2024, 47(1): 93-103.]
[12] 佟德志, 樊浩. 韧性城市治理的五星模型——基于“全球韧性百城” 项目案例的扎根分析[J]. 天津师范大学学报(社会科学版), 2023(5): 43-57.
  [Tong Dezhi, Fan Hao. The five star model of resilient urban governance: Grounded analysis of the “global 100 resilient cities” project cases[J]. Journal of Tianjin Normal University (Social Sciences Edition), 2023(5): 43-57.]
[13] 周成, 赵亚玲, 张旭红, 等. 黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J]. 干旱区地理, 2023, 46(9): 1514-1523.
  [Zhou Cheng, Zhao Yaling, Zhang Xuhong, et al. Spatiotemporal evolutionary characteristics and coordinated development of urban ecological resilience and efficiency in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(9): 1514-1523.]
[14] 刘悦, 徐惠孝, 宋小青, 等. 湖南省城市多维韧性耦合协调特征及影响因素[J]. 资源开发与市场, 2023, 39(12): 1592-1598.
  [Liu Yue, Xu Huixiao, Song Xiaoqing, et al. Coupling coordination characteristics and influencing factors of multidimensional urban resilience in Hunan Province[J]. Resource Development & Market, 2023, 39(12): 1592-1598.]
[15] 赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731.
  [Zhao Ruidong, Fang Chuanglin, Liu Haimeng. Progress and prospect of urban resilience research[J]. Progress in Geography, 2020, 39(10): 1717-1731.]
[16] 聂春霞, 李韧. 基于水安全的区域水资源配置方案评价及优选——以天山北坡城市群为例[J]. 生态经济, 2020, 36(7): 154-163.
  [Nie Chunxia, Li Ren. Evaluation and optimization of regional water resources allocation based on water security: Taking urban agglomeration in the north slope of Tianshan Mountain as an example[J]. Ecological Economy, 2020, 36(7): 154-163.]
[17] 潘義承, 田家华. 城市韧性的时空分异及其影响因素: 基于湖北省的实证[J]. 统计与决策, 2023, 39(23): 57-62.
  [Pan Yicheng, Tian Jiahua. Spatio-temporal differentiation of urban resilience and its influencing factors: Empirical evidence based on Hubei Province[J]. Statistics & Decision, 2023, 39(23): 57-62.]
[18] 魏玖长, 闫卓然, 周磊. 中国五大城市群城市韧性水平时空演变研究[J]. 中国应急管理, 2023(8): 56-61.
  [Wei Jiuchang, Yan Zhuoran, Zhou Lei. Urban resilience levels of five major urban agglomerations in China: A study on spatial and temporal evolution of urban resilience levels[J]. China Emergency Management, 2023(8): 56-61.]
[19] 白立敏, 修春亮, 冯兴华, 等. 中国城市韧性综合评估及其时空分异特征[J]. 世界地理研究, 2019, 28(6): 77-87.
  [Bai Limin, Xiu Chunliang, Fen Xinghua, et al. A comprehensive assessment of urban resilience and its spatial differentiation in China[J]. World Regional Studies, 2019, 28(6): 77-87.]
[20] 王洋, 方创琳, 盛长元. 扬州市住宅价格的空间分异与模式演变[J]. 地理学报, 2013, 68(8): 1082-1096.
  [Wang Yang, Fang Chuanglin, Sheng Changyuan. Spatial differentiation and model evolution of housing prices in Yangzhou[J]. Acta Geographica Sinica, 2013, 68(8): 1082-1096.]
[21] 王璇. 中原城市群城市韧性评价研究[D]. 济南: 山东师范大学, 2022.
  [Wang Xuan. Study on the evaluation of urban resilience in Zhongyuan urban agglomeration[D]. Jinan: Shandong Normal University, 2022.]
[22] 周宏浩, 陈晓红. 东北地区可持续生计安全时空分异格局及障碍因子诊断[J]. 地理科学, 2018, 38(11): 1864-1874.
  [Zhou Honghao, Chen Xiaohong. Spatio-temporal evolution of sustainable livelihood security and study of its obstacle indicators in northeast China[J]. Scientia Geographica Sinica, 2018, 38(11): 1864-1874.]
[23] 邓聚龙. 灰色预测与灰决策[M]. 武汉: 华中科技大学出版社, 2002.
  [Deng Julong. Grey forecasting and grey decision making[M]. Wuhan: Huazhong University of Science and Technology Press, 2002.]
[24] 王璇, 王成新, 史佳璐. 中原城市群城市韧性时空演进及跃迁机制[J]. 地理科学, 2024, 44(7): 1206-1216.
  [Wang Xuan, Wang Chengxin, Shi Jialu. Spatial and temporal evolution of urban resilience and its transition mechanism in Zhongyuan urban agglomeration[J]. Scientia Geographica Sinica, 2024, 44(7): 1206-1216.]
[25] 史维良, 李博雅. 黄河流域三大城市群城市韧性空间网络结构研究[J]. 干旱区地理, 2024, 47(10): 1767-1780.
  [Shi Weiliang, Li Boya. Resilience spatial network structure of the three major urban agglomerations in the Yellow River Basin[J]. Arid Land Geography, 2024, 47(10): 1767-1780.]
文章导航

/