植物生态

鄂尔多斯高原十大孔兑不同地貌地形的植被覆盖特征分析

  • 马启民 ,
  • 杜函芮 ,
  • 王峥铭 ,
  • 龙银平
展开
  • 1.成都信息工程大学资源环境学院,四川 成都 610225
    2.中国科学院西北生态环境资源研究院国家冰川冻土沙漠科学数据中心,甘肃 兰州 730070
马启民(1985-),男,博士,讲师,主要从事干旱区植被变化研究. E-mail: mqm@cuit.edu.cn
龙银平(1986-),女,博士,讲师,主要从事陆面生态水文过程研究. E-mail: longyp@cuit.edu.cn

收稿日期: 2024-04-16

  修回日期: 2024-05-31

  网络出版日期: 2025-03-14

基金资助

国家自然科学基金项目(42201520);国家冰川冻土沙漠科学数据中心专题(E01Z790201);成都信息工程大学人才引进项目(KYTZ202113)

Vegetation coverage characteristics of different topography and landforms in ten tributaries of the Ordos Plateau

  • MA Qimin ,
  • DU Hanrui ,
  • WANG Zhengming ,
  • LONG Yinping
Expand
  • 1. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China
    2. National Cryosphere Desert Data Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, Gansu, China

Received date: 2024-04-16

  Revised date: 2024-05-31

  Online published: 2025-03-14

摘要

人工植草种树有效改善了鄂尔多斯高原十大孔兑的水土流失,但部分区域出现了植被退化现象,深入理解地形对植被的影响对该地水土保持具有重要的现实意义。基于资源三号01星(ZY3-01)卫星高程数据、MODIS归一化植被指数(NDVI)数据对2000—2022年十大孔兑不同地貌地形的植被变化进行分析。结果表明:(1) 十大孔兑植被整体向好发展,不同地貌类型NDVI呈上升趋势,平原区、丘陵区、沙漠区多年平均NDVI分别为0.591、0.337、0.325,但沙漠区增加趋势最大。平原区植被退化主要分布在黄河沿岸,占平原区的16.28%;沙漠区退化主要分布在壕庆河中游,占沙漠区的0.64%;丘陵区退化主要分布在西柳沟、罕台川、哈什拉川上游,占丘陵区的1.88%。(2) 不同坡度条件下,平原区的平缓坡和缓坡的植被整体要好于水平地和平地,沙漠区NDVI表现为水平地>平地>平缓坡>缓坡>陡坡,丘陵区NDVI几乎与沙漠区完全一致,但陡坡在2000—2022年都好于平缓坡和缓坡,差于水平地和平地。(3) 不同坡向条件下,2000—2022年平原区NDVI表现为阳坡>半阴半阳坡>阴坡,沙漠区基本表现为阴坡>阳坡>半阴半阳坡,丘陵区表现为阴坡>半阴半阳坡>阳坡。因此,沙漠区和丘陵区应在水平地或平地种植较多的植被,在坡地区域应首选坡度较小的阴坡种植。

本文引用格式

马启民 , 杜函芮 , 王峥铭 , 龙银平 . 鄂尔多斯高原十大孔兑不同地貌地形的植被覆盖特征分析[J]. 干旱区地理, 2025 , 48(3) : 434 -443 . DOI: 10.12118/j.issn.1000-6060.2024.241

Abstract

Artificial grass and tree planting have effectively mitigated soil erosion in the ten tributaries of the Ordos Plateau, Inner Mongolia, China. However, some regions have experienced vegetation degradation. Understanding the influence of topography on vegetation is critical for soil and water conservation efforts in this area. This study analyzed vegetation changes across different topographies and landforms in the ten tributaries from 2000 to 2022, utilizing digital elevation model (DEM) data from the ZY3-01 satellite and normalized difference vegetation index (NDVI) data from MODIS. The findings are as follows: (1) The overall vegetation in the ten tributaries improved, with the NDVI of different landform types showing an upward trend. The multi-year average NDVI values for plain, hilly, and desert areas were 0.591, 0.337, and 0.325, respectively. The most pronounced improvement occurred in the desert area. Vegetation degradation accounted for 16.28% of the plain area (mainly along the Yellow River), 0.64% of the desert area (predominantly in the middle reaches of the Haoqing River), and 1.88% of the hilly area (primarily in the upper reaches of Xiliugou, Hantaichuan, and Hashilachuan). (2) In the plain area, NDVI on flat gentle slopes and gentle slopes exceeded that on horizontal and flat land. In the desert area, NDVI followed the trend: horizontal land>flat land>flat gentle slope>gentle slope>steep slope. Similarly, in the hilly area, NDVI trends mirrored those of the desert area; however, from 2000 to 2022, NDVI on steep slopes surpassed that on flat gentle slopes and gentle slopes but remained lower than that on horizontal and flat land. (3) From 2000 to 2022, in the plain area, NDVI followed the trend: sunny slope>half-sunny slope>shady slope. Conversely, in the desert area, NDVI followed the trend: shady slope>sunny slope>half-sunny slope. In the hilly area, the trend was shady slope>half-sunny slope>sunny slope. These findings suggest that desert and hilly areas would benefit from planting vegetation on horizontal or flat land and on shady slopes with lower gradients for sloping areas.

参考文献

[1] 马启民, 李永山, 王海兵, 等. 鄂尔多斯沙地人工柠条林能量平衡与蒸散研究[J]. 高原气象, 2022, 41(6): 1511-1521.
  [Ma Qimin, Li Yongshan, Wang Haibing, et al. Study on energy balance and evapotranspiration of an artificial Caragana korshinskii shrub land in Ordos Plateau[J]. Plateau Meteorology, 2022, 41(6): 1511-1521. ]
[2] Cramer W, Bondeau A, Woodward F I, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models[J]. Global Change Biology, 2001, 7(4): 357-373.
[3] Theurillat J P, Guisan A. Potential impact of climate change on vegetation in the European Alps: A review[J]. Climatic Change, 2001, 50(2): 77-109.
[4] 庞冉, 王文. 基于MODIS数据的吐鲁番盆地2001—2017年植被变化及水热组合影响分析[J]. 干旱区地理, 2020, 43(5): 1242-1252.
  [Pang Ran, Wang Wen. Analysis of vegetation index changes and the influence of hydrothermal combination in the Turpan Basin from 2001 to 2017 based on MODIS data[J]. Arid Land Geography, 2020, 43(5): 1242-1252. ]
[5] Brown D G. Comparison of vegetation-topography relationships at the alpine treeline ecotone[J]. Physical Geography, 1994, 15(2): 125-145.
[6] Fu B J, Zhang Q J, Chen L D. Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China[J]. Catena, 2006, 65(1): 41-48.
[7] Zhang B Q, Wu P T, Zhao X N, et al. Changes in vegetation condition in areas with different gradients (1980—2010) on the Loess Plateau, China[J]. Environmental Earth Sciences, 2013, 68(8): 2427-2438.
[8] Ostendorf B, Reynolds J F. A model of Arctic tundra vegetation derived from topographic gradients[J]. Landscape Ecology, 1998, 13(3): 187-201.
[9] Batdelger G, Masahide I, Yasunori K, et al. Topographical and hydrological effects on meso-scale vegetation in desert steppe, Mongolia[J]. Journal of Arid Land, 2017, 9(1): 132-142.
[10] Ahmed L, Osvaldo V, Yves B, et al. Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian clay belt region[J]. Forest Ecology and Management, 2014, 330: 144-157.
[11] 贺军奇, 拜寒伟, 徐轶玮, 等. 陕西黄土区农田土壤主要养分特征及影响因素[J]. 干旱区研究, 2023, 40(12): 1907-1917.
  [He Junqi, Bai Hanwei, Xu Yiwei, et al. Main nutrient characteristics and influencing factors of farmland soil in the Loess Plateau of the Shaanxi Province[J]. Arid Zone Research, 2023, 40(12): 1907-1917. ]
[12] 彭小平, 樊军, 米美霞, 等. 黄土高原水蚀风蚀交错区不同立地条件下旱柳树干液流差异[J]. 林业科学, 2013, 49(9): 38-45.
  [Peng Xiaoping, Fan Jun, Mi Meixia, et al. Sapflow dynamic changes of Salix matsudana in the water-wind erosion crisscross region on the Loess Plateau[J]. Scientia Silvae Sinicae, 2013, 49(9): 38-45. ]
[13] 王艳兵, 王彦辉, 熊伟, 等. 六盘山半干旱区华北落叶松树干液流速率及主要影响因子的坡位差异[J]. 林业科学, 2017, 53(6): 10-20.
  [Wang Yanbing, Wang Yanhui, Xiong Wei, et al. Variation in the sapflow velocity of Larix principis-rupprechtii and its impact factors in different slope positions in a semi-arid region of Liupan Mountains[J]. Scientia Silvae Sinicae, 2017, 53(6): 10-20. ]
[14] 王云霓, 曹恭祥, 王彦辉, 等. 六盘山南侧不同坡位华北落叶松人工林树干液流特征及其环境影响因子[J]. 生态学杂志, 2018, 37(7): 1932-1942.
  [Wang Yunni, Cao Gongxiang, Wang Yanhui, et al. Sap flow characteristics of Larix principis-rupprechtii plantation and its impact factors in different slope locations at the south side of Liupan Mountains[J]. Chinese Journal of Ecology, 2018, 37(7): 1932-1942. ]
[15] Pei Z Y, Hao S R, Pang G H, et al. Sap flow of Salix psammophila and its principal influencing factors at different slope positions in the Mu Us Desert[J]. PLoS ONE, 2019, 14(12): e0225653, doi: 10.1371/journal.pone.0225653.
[16] 汝海丽, 张海东, 焦峰, 等. 黄土丘陵区微地形条件下草本群落特征与土壤水分及养分关系分析[J]. 草地学报, 2016, 24(4): 776-782.
  [Ru Haili, Zhang Haidong, Jiao Feng, et al. Relation analysis of herbaceous community characteristics and soil moisture and nutrients on micro-scale topography typical section in hilly Loess Plateau region, China[J]. Acta Agrestia Sinica, 2016, 24(4): 776-782. ]
[17] 黄平, 李廷轩, 张佳宝, 等. 坡度和坡向对低山茶园土壤有机质空间变异的影响[J]. 土壤, 2009, 41(2): 264-268.
  [Huang Ping, Li Tingxuan, Zhang Jiabao, et al. Effects of slope’s gradient and aspect on spatial heterogeneity of soil organic matter in low mountainous region[J]. Soils, 2009, 41(2): 264-268. ]
[18] Deng Y X, Chen X F, Chuvieco E, et al. Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape[J]. Remote Sensing of Environment, 2007, 111(1): 122-134.
[19] Zhou Q W, Wei X C, Zhou X, et al. Vegetation coverage change and its response to topography in a typical karst region: The Lianjiang River Basin in southwest China[J]. Environmental Earth Sciences, 2019, 78(6): 191, doi: 10.1007/s12665-019-8218-z.
[20] 汤巧英, 戚德辉, 宋立旺, 等. 基于GIS和RS的延河流域植被覆盖度与地形因子的相关性研究[J]. 水土保持研究, 2017, 24(4): 198-203.
  [Tang Qiaoying, Qi Dehui, Song Liwang, et al. Correlation of vegetation coverage and topographic factors in Yanhe River Basin based on GIS and RS[J]. Research of Soil and Water Conservation, 2017, 24(4): 198-203. ]
[21] 龙映豪, 李旭东, 程东亚. 山区植被覆盖度变化的地形分异特征——以贵州开阳县为例[J]. 水土保持研究, 2022, 29(5): 268-275.
  [Long Yinghao, Li Xudong, Cheng Dongya. Topographic differentiation of vegetation coverage changes between shaded slopes and sunny slopes in mountainous areas: A case of Kaiyang County, Guizhou Province[J]. Research of Soil and Water Conservation, 2022, 29(5): 268-275. ]
[22] 赵文慧, 陈妮, 闫瑞, 等. 近20年来北洛河流域植被覆盖度随地形因子变化特征探究[J]. 水土保持研究, 2016, 23(4): 10-14.
  [Zhao Wenhui, Chen Ni, Yan Rui, et al. Study on variation of the vegetation coverage based on terrain factors in the Beiluo River Basin in the past 20 years[J]. Research of Soil and Water Conservation, 2016, 23(4): 10-14. ]
[23] 夏天, 蓝海浪, 刘秀丽. 北京市植被覆盖对地形和土地利用的响应[J]. 草业科学, 2023, 40(7): 1742-1753.
  [Xia Tian, Lan Hailang, Liu Xiuli. The response of vegetation cover to topography and land use in Beijing[J]. Pratacultural Science, 2023, 40(7): 1742-1753. ]
[24] He J, Shi X Y, Fu Y J. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience[J]. Journal of Environmental Management, 2021, 289: 112562, doi: 10.1016/j.jenvman.2021.112562.
[25] Wang C Y, Wang J N, Naudiyal N, et al. Multiple effects of topographic factors on spatio-temporal variations of vegetation patterns in the three parallel rivers region, southeast Qinghai-Tibet Plateau[J]. Remote Sensing, 2021, 14(1): 151, doi: 10.3390/rs14010151.
[26] Emran A, Roy S, Bagmar S H, et al. Assessing topographic controls on vegetation characteristics in Chittagong Hill Tracts (CHT) from remotely sensed data[J]. Remote Sensing Applications: Society and Environment, 2018, 11: 198-208.
[27] Li Q, Shi X Y, Wu Q G. Exploring suitable topographical factor conditions for vegetation growth in Wanhuigou catchment on the Loess Plateau, China: A new perspective for ecological protection and restoration[J]. Ecological Engineering, 2020, 158: 106053, doi: 10.1016/j.ecoleng.2020.106053.
[28] 管亚兵, 杨胜天, 周旭, 等. 黄河十大孔兑流域林草植被覆盖度的遥感估算及其动态研究[J]. 北京师范大学学报, 2016, 52(4): 458-465.
  [Guan Yabing, Yang Shengtian, Zhou Xu, et al. Study on shrubs-herbs-arbor vegetation coverage and dynamic changes in the ten tributaries of Yellow River in Inner Mongolia by remote sensing method[J]. Journal of Beijing Normal University (Natural Science Edition), 2016, 52(4): 458-465. ]
[29] 朱吉生, 李纪人, 黄诗峰, 等. 近30年十大孔兑流域植被覆盖度空间变化的遥感调查与分析[J]. 中国水土保持, 2015(7): 68-70.
  [Zhu Jisheng, Li Jiren, Huang Shifeng, et al. Remote sensing survey and analysis of spatial changes in vegetation cover in the ten Kongdui basins in the last 30 years[J]. Soil and Water Conservation in China, 2015(7): 68-70. ]
[30] 顾畛逵, 师长兴, 阳辉, 等. 内蒙古十大孔兑流域地貌演化格局及其成因机制[J]. 干旱区地理, 2017, 40(6): 1188-1197.
  [Gu Zhenkui, Shi Changxing, Yang Hui, et al. Landform evolution pattern of the ten Kongdui basins and its genetic mechanisms in Inner Mongolia of China[J]. Arid Land Geography, 2017, 40(6): 1188-1197. ]
[31] 曾令建, 杨振奇, 秦富仓, 等. 内蒙古十大孔兑区土地利用类型变化与生态环境效应[J]. 水土保持通报, 2023, 43(1): 214-223.
  [Zeng Lingjian, Yang Zhenqi, Qin Fucang, et al. Changes in land use type and ecological environment effect at ten tributaries in Inner Mongolia[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 214-223. ]
[32] Ma Q M, Long Y P, Jia X P, et al. Vegetation response to climatic variation and human activities on the Ordos Plateau from 2000 to 2016[J]. Environmental Earth Sciences, 2019, 78(24): 709, doi:10.1007/s12665-019-8732-z.
[33] 唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017, 46(10): 1482-1491.
  [Tang Xinming, Wang Hongyan, Zhu Xiaoyong. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1482-1491. ]
[34] 张棠棣, 张建奎, 王润文. 富县土地坡度分级与制图[J]. 水土保持通报, 1984(5): 34-37.
  [Zhang Tangdi, Zhang Jiankui, Wang Runwen. Land slope classification and mapping in Fu County[J]. Bulletin of Soil and Water Conservation, 1984(5): 34-37. ]
[35] 雷斯越. 不同地形条件下退耕草地植被恢复与土壤理化性质分异特征[D]. 咸阳: 西北农林科技大学, 2019.
  [Lei Siyue. Vegetation restoration with soil physical and chemical properties’ distribution characteristics of converted grassland in different topographic conditions[D]. Xianyang: Northwest A & F University, 2019. ]
[36] 牟乐, 芦奕晓, 杨惠敏, 等. 1981—2015年中国西北牧区植被覆盖的时空变化[J]. 干旱区研究, 2018, 35(3): 615-623.
  [Mou Le, Lu Yixiao, Yang Huimin, et al. Spatiotemporal variation of vegetation cover in the pastoral area in northwestern China during the period of 1981—2015[J]. Arid Zone Research, 2018, 35(3): 615-623. ]
[37] 马小梅, 杜秉晨曦, 程勇翔, 等. 准噶尔盆地植被变化趋势及相关因素分析[J]. 干旱区研究, 2021, 38(5): 1401-1410.
  [Ma Xiaomei, Du Bingchenxi, Cheng Yongxiang, et al. Analysis of vegetation variation trend and correlative factors in Junggar Basin[J]. Arid Zone Research, 2021, 38(5): 1401-1410. ]
[38] 孙天瑶, 李雪梅, 许民, 等. 2000—2018年塔里木河流域植被覆盖时空格局[J]. 干旱区地理, 2020, 43(2): 415-424.
  [Sun Tianyao, Li Xuemei, Xu Min, et al. Spatial-temporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018[J]. Arid Land Geography, 2020, 43(2): 415-424. ]
[39] 李雅倩, 杨建华, 夏皓斌, 等. 2000—2022年伊犁河流域植被时空变化特征[J]. 干旱区地理, 2024, 47(5): 741-752.
  [Li Yaqian, Yang Jianhua, Xia Haobin, et al. Spatiotemporal variations of vegetation in the Ili River Basin from 2000 to 2022[J]. Arid Land Geography, 2024, 47(5): 741-752. ]
[40] 孙琰蕙, 张定海, 张志山. 腾格里沙漠不同类型沙丘土壤水分含量与地形-植被因子关系研究[J]. 干旱区地理, 2022, 45(5): 1570-1578.
  [Sun Yanhui, Zhang Dinghai, Zhang Zhishan. Relationship between soil moisture content and topography-vegetation factors in different types of dunes in the Tengger Desert[J]. Arid Land Geography, 2022, 45(5): 1570-1578. ]
[41] 成龙, 吴波, 贾晓红, 等. 基于连续观测数据的毛乌素沙地生长季土壤水分动态及其对降雨的响应[J]. 干旱区地理, 2024, 47(4): 648-661.
  [Cheng Long, Wu Bo, Jia Xiaohong, et al. Dynamic change of soil moisture and its response to rainfall during the growing season in Mu Us Sandy Land based on continuous observation data[J]. Arid Land Geography, 2024, 47(4): 648-661. ]
[42] 常兆丰, 李亚, 张剑挥, 等. 新月形沙丘稳定性机理——以甘肃河西沙区为例[J]. 生态学报, 2017, 37(13): 4375-4383.
  [Chang Zhaofeng, Li Ya, Zhang Jianhui, et al. Stability mechanisms of barchan sand dunes: A case study in the Hexi Desert in Gansu[J]. Acta Ecologica Sinica, 2017, 37(13): 4375-4383. ]
[43] 刘殿君, 于森淼, 孟庆东, 等. 黄河流域鄂尔多斯十大孔兑淤地坝减沙效应[J]. 水土保持研究, 2023, 30(2): 42-49.
  [Liu Dianjun, Yu Senmiao, Meng Qingdong, et al. Effect of check dams on sediment retention of the ten tributaries in the Ordos Basin of the Yellow River Basin[J]. Research of Soil and Water Conservation, 2023, 30(2): 42-49. ]
文章导航

/