内蒙古中部地区风电场风速特性及尾流效应计算
收稿日期: 2024-05-09
修回日期: 2024-08-22
网络出版日期: 2025-03-14
基金资助
内蒙古自治区自然科学基金项目(2022MS04019);内蒙古自治区“揭榜挂帅”项目(2024JBGS0054)
Wind speed characteristics and wake effect calculation of the wind farm in the central region of Inner Mongolia
Received date: 2024-05-09
Revised date: 2024-08-22
Online published: 2025-03-14
为研究风电场尾流特征及与气象条件的关系,选取内蒙古中部地区某风电场33台风电机组,统计分析了2021—2023年平均风速、风向、风频分布等风资源评估参数。基于Jensen尾流模型,计算不同风向及精细化主导风向尾流区风速,探讨考虑尾流效应后的风速与其他气象要素的相关性。结果表明:(1) 2021—2023年内蒙古中部地区风电场以西南(SW)风为主,高频风向年内变化由偏西向偏南转变,月内风向集中且风速差较小。主导风向下平均风速最大,风速频率曲线呈现正偏态分布。(2) 各风向平均风速下,受尾流影响最大的风电机组风速损失率超过10%,其中西北(NW)、东南(SE)风向超过50%风电机组受尾流影响,风速损失集中分布在风电场东北(NE)向偏后位置,偏西风向风速减小更明显。(3) 气压、气温和湿度对不同风向风速日变化的影响程度不同,上述气象因子对风速的影响下,SW风向在4~5 m·s-1风速区间内尾流模型计算效果相对好于其他风速段,风速平均绝对百分比误差与相对湿度呈负相关。NW风向在9~10 m·s-1风速区间内尾流模型计算风速与实测更接近,误差与气压和气温都呈正相关。SE、NE风向分别在9~10 m·s-1、7~8 m·s-1风速区间尾流模型计算效果较好。研究结果可为风电机组尾流效应分析及风电场风速预测提供一定参考。
贾晓红 , 石岚 , 郝玉珠 . 内蒙古中部地区风电场风速特性及尾流效应计算[J]. 干旱区地理, 2025 , 48(3) : 421 -433 . DOI: 10.12118/j.issn.1000-6060.2024.289
To investigate the characteristics of wind farm wake effects and their relationship with meteorological conditions, 33 wind turbines from a wind farm in central Inner Mongolia, China were selected for analysis. Wind resource assessment parameters, including average wind speed, wind direction, and wind frequency distribution, were statistically analyzed from 2021 to 2023. Using the Jensen wake model, wind speeds in the wake area were calculated for different wind directions, with a focus on the refined dominant wind direction. The correlation between wind speeds and meteorological factors, accounting for wake effects, was also explored. The findings are as follows: (1) From 2021 to 2023, the wind farm in central Inner Mongolia was predominantly influenced by southwest winds. High-frequency wind directions shifted from west to south throughout the year. Monthly wind directions were relatively stable, with concentrated wind directions and small wind speed variations. The average wind speed was highest under the dominant wind direction, and the wind speed frequency curve exhibited a positively skewed distribution. (2) Under average wind speeds for each direction, turbines most affected by the wake experienced wind speed losses exceeding 10%. More than half of the turbines were affected by wake effects under northwest and southeast winds, with the most significant losses occurring in the northeasterly downstream positions of the wind farm. Wind speed reductions were particularly pronounced under westerly winds. (3) The impact of barometric pressure, air temperature, and humidity on daily wind speed variation differed across wind directions. For southwest winds, the wake model performed best in the 4-5 m·s-1 wind speed range, with the average absolute percentage error of wind speed negatively correlated with relative humidity. For northwest winds in the 9-10 m·s-1 range, the wake model calculations closely matched measured wind speeds, with errors positively correlated with barometric pressure and temperature. In addition, the wake model performed well in the 9-10 m·s-1 and 7-8 m·s-1 ranges for southeast and northeast winds, respectively. These results provide valuable insights into the analysis of wind turbine wake effects and wind speed predictions for wind farms.
Key words: wind farm; wind speed; wind direction; wake effect; meteorological factor
[1] | 张立栋, 石强, 姜铁骝, 等. 不同强度湍流风对风力机气动载荷的影响[J]. 分布式能源, 2023, 8(5): 61-68. |
[Zhang Lidong, Shi Qiang, Jiang Tieliu, et al. Influence of turbulent wind of different intensity on aerodynamic load of wind turbine[J]. Distributed Energy, 2023, 8(5): 61-68. ] | |
[2] | 樊振兴, 张云飞, 程更建, 等. 测风激光雷达在智慧风电场的应用进展[J]. 物联网技术, 2024, 14(5): 151-155. |
[Fan Zhenxing, Zhang Yunfei, Cheng Gengjian, et al. Progress in the application of wind measurement lidar in smart wind farms[J]. Internet of Things Technologies, 2024, 14(5): 151-155. ] | |
[3] | 沈铖波. 基于半经验尾流模型的风机布置优化研究[D]. 杭州: 浙江大学, 2022. |
[Shen Chengbo. Research on wind turbine layout optimization based on semi-empirical wake model[D]. Hangzhou: Zhejiang University, 2022. ] | |
[4] | 张晓东, 张梦雨, 白鹤. 基于高斯分布的风电场尾流效应计算模型[J]. 华北电力大学学报, 2017, 44(5): 99-103. |
[Zhang Xiaodong, Zhang Mengyu, Bai He. Wind farm wake effect calculation model based on Gaussian distribution[J]. Journal of North China Electric Power University, 2017, 44(5): 99-103. ] | |
[5] | 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014. |
[Tian Linlin. Numerical simulation of wind turbine wakes and the study of wind farm layout optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. ] | |
[6] | 刘晴晴. 基于尾流效应的风电场三维微观选址研究[D]. 天津: 河北工业大学, 2018. |
[Liu Qingqing. Research on three dimensional site selection of wind farm based on wake effect[D]. Tianjin: Hebei University of Technology, 2018. ] | |
[7] | 李胜, 葛文澎, 吴嘉诚, 等. 风力机组尾流模型适用性评价[J]. 南方能源建设, 2024, 11(1): 42-53. |
[Li Sheng, Ge Wenpeng, Wu Jiacheng, et al. Applicability evaluation of wind turbine wake models[J]. Southern Energy Construction, 2024, 11(1): 42-53. ] | |
[8] | Barthelmie R J, Frandsen S T, Nielsen M N, et al. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2007, 10(6): 517-528. |
[9] | Archer C L, Vasel-Be-Hagh A, Yan C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018, 226: 1187-1207. |
[10] | 刘南南, 关中杰. Gaussian与GA风电场尾流软测量建模与优化[J]. 中国测试, 2023, 49(6): 107-113. |
[Liu Nannan, Guan Zhongjie. Modeling and optimization of wind farm wake soft sensing based on Gaussian and GA[J]. China Measurement & Test, 2023, 49(6): 107-113. ] | |
[11] | 袁飞, 夏德喜, 汪正军. 基于SCADA数据的风电机组群尾流效应计算与验证研究[J]. 智慧电力, 2023, 51(7): 23-30. |
[Yuan Fei, Xia Dexi, Wang Zhengjun. Calculation and verification of wake effect on wind turbine based on SCADA data[J]. Smart Power, 2023, 51(7): 23-30. ] | |
[12] | 樊小朝, 陈景, 史瑞静, 等. 考虑尾流效应与载荷损耗的风电场优化控制[J]. 水力发电, 2021, 47(10): 89-94, 99. |
[Fan Xiaochao, Chen Jing, Shi Ruijing, et al. Optimal control of wind farm considering wake effect and load loss[J]. Water Power, 2021, 47(10): 89-94, 99. ] | |
[13] | Barthelmie R J, Larsen G C, Frandsen S T, et al. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(7): 888-901. |
[14] | 张镇, 张晓东. 基于半经验公式的风力机尾流模型研究[J]. 现代电力, 2012, 29(2): 64-67. |
[Zhang Zhen, Zhang Xiaodong. Research on the wake model of wind turbine based on semi-empirical formula[J]. Modern Electric Power, 2012, 29(2): 64-67. ] | |
[15] | 李啸吟. 风电机组尾流影响和风电场功率提升研究[D]. 沈阳: 沈阳工业大学, 2022. |
[Li Xiaoyin. Research on influence of wind turbine wake and wind farm power improvement[D]. Shenyang: Shenyang University of Technology, 2022. ] | |
[16] | 朱洁, 匡婵, 赵宜婵. 基于Jensen和Gaussian尾流模型的风电场布局优化的比较[J]. 河南科学, 2021, 39(3): 345-352. |
[Zhu Jie, Kuang Chan, Zhao Yichan. Comparison of wind farm layout optimizations based on Jensen and Gaussian wake models[J]. Henan Science, 2021, 39(3): 345-352. ] | |
[17] | 苏中莹, 袁金库, 李诗峰. 风电场风速分布对机组发电量影响的研究[J]. 数码设计, 2017, 6(7): 102-104. |
[Su Zhongying, Yuan Jinku, Li Shifeng. Study on the influence of wind speed distribution on the generating capacity of the unit[J]. Peak Data Science, 2017, 6(7): 102-104. ] | |
[18] | 杨富程, 韩二红, 王彬滨, 等. 风电场风速概率Weibull分布的参数估计研究[J]. 江西科学, 2019, 37(2): 264-269, 299. |
[Yang Fucheng, Han Erhong, Wang Binbin, et al. Estimation algorithm on the Weibull probabilistic distribution parameters of wind speed in wind farms[J]. Jiangxi Science, 2019, 37(2): 264-269, 299. ] | |
[19] | 黄小佳. 基于机器学习的风能资源评估与风速预测的模型构建及研究[D]. 大连: 东北财经大学, 2021. |
[Huang Xiaojia. Model construction and research of wind energy resource assessment and wind speed prediction based on machine learning[D]. Dalian: Dongbei University of Fiance & Economics, 2021. ] | |
[20] | 黄武枫. 风电场风速概率分布及其拟合模型研究[D]. 南宁: 广西大学, 2021. |
[Huang Wufeng. Research on probability distribution of wind speed in wind farm and its fitting models[D]. Nanning: Guangxi University, 2021. ] | |
[21] | 牛怡莹, 李春兰, 王军, 等. 内蒙古ERA5再分析降水数据性能评估与极端降水时空特征分析[J]. 干旱区地理, 2023, 46(9): 1418-1431. |
[Niu Yiying, Li Chunlan, Wang Jun, et al. Performance evaluation of ERA5 reanalysis precipitation data and spatiotemporal characteristics of extreme precipitation in Inner Mongolia[J]. Arid Land Geography, 2023, 46(9): 1418-1431. ] | |
[22] | 肖东升, 王宁, 刘志成. 干旱地区“代表性人口格网数据集”精度研究——以甘宁青地区为例[J]. 干旱区地理, 2023, 46(3): 505-514. |
[Xiao Dongsheng, Wang Ning, Liu Zhicheng. Accuracy of “representative population grid dataset” in arid areas: A case of Gansu-Ningxia-Qinghai region[J]. Arid Land Geography, 2023, 46(3): 505-514. ] | |
[23] | 徐栋, 白雪峰, 孙静. 乌兰察布风电基地风能资源特征分析[J]. 西北水电, 2022(1): 87-89. |
[Xu Dong, Bai Xuefeng, Sun Jing. Analysis on the characteristics of wind energy resources in Ulanqab wind power base[J]. Northwest Hydropower, 2022(1): 87-89. ] | |
[24] | 石岚, 徐丽娜, 郝玉珠. 基于风速高相关分区的风电场风速预报订正[J]. 应用气象学报, 2016, 27(4): 506-512. |
[Shi Lan, Xu Lina, Hao Yuzhu. The correction of forecast wind speed in a wind farm based on partitioning of the high correlation of wind speed[J]. Journal of Applied Meteorological Science, 2016, 27(4): 506-512. ] | |
[25] | 章永辉, 楼俊伟, 张鑫, 等. 金华市风能资源分析[J]. 沙漠与绿洲气象, 2023, 17(2): 98-105. |
[Zhang Yonghui, Lou Junwei, Zhang Xin, et al. Analysis of wind energy resource in Jinhua City[J]. Desert and Oasis Meteorology, 2023, 17(2): 98-105. ] | |
[26] | 陈小婷, 李培荣, 冯典, 等. 陕西省风的时空分布及ERA5风资料检验评估[J]. 陕西气象, 2023(3): 23-30. |
[Chen Xiaoting, Li Peirong, Feng Dian, et al. Spatial and temporal distribution of winds in Shaanxi Province and assessment of ERA5 wind data test[J]. Journal of Shaanxi Meteorology, 2023(3): 23-30. ] | |
[27] | 王淼, 曾利华. 风速频率分布模型的研究[J]. 水力发电学报, 2011, 30(6): 204-209. |
[Wang Miao, Zeng Lihua. Study of wind speed frequency distribution model[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 204-209. ] | |
[28] | 梁浩. 风电场风机尾流效应的分析与应用[D]. 成都: 电子科技大学, 2017. |
[Liang Hao. The analysis and application of wind turbine wake effect[D]. Chengdu: University of Electronic Science and Technology of China, 2017. ] | |
[29] | 杜博文. 大气稳定度对风力机尾流演化的影响机理研究[D]. 北京: 华北电力大学, 2022. |
[Du Bowen. Research on the influence mechanism of atmospheric stability on the wind-turbine wakes[D]. Beijing: North China Electric Power University, 2022. ] | |
[30] | 高晓清, 陈伯龙, 杨丽薇, 等. 大气湍流稳定度对风力机尾流影响的模拟研究[J]. 太阳能学报, 2020, 41(4): 145-152. |
[Gao Xiaoqing, Chen Bolong, Yang Liwei, et al. Simulations study of impact of atmospheric turbulence stability on turbine wake[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 145-152. ] | |
[31] | 何仲阳, 宋梦譞, 张兴. 地表温度对风场模拟的影响[J]. 化工学报, 2012, 63(增刊1): 7-11. |
[He Zhongyang, Song Mengxuan, Zhang Xing. Influence of terrain surface temperature on wind farm simulation[J]. CIESC Journal, 2012, 63(Suppl. 1): 7-11. ] | |
[32] | 陆艳艳, 袁建平, 张磊, 等. 1979—2019年内蒙古发电风速变化趋势分析[J]. 科技风, 2021(20): 193-196. |
[Lu Yanyan, Yuan Jianping, Zhang Lei, et al. Trend analysis of wind speed change for power generation in Inner Mongolia from 1979 to 2019[J]. Technological Trend, 2021(20): 193-196. ] |
/
〈 |
|
〉 |