气候与水文

秦岭山区-黄土高原地区生态基流区域差异及其阈值研究

  • 杨晓亚 ,
  • 于坤霞 ,
  • 李占斌 ,
  • 李鹏 ,
  • 刘永刚 ,
  • 莫淑红 ,
  • 杨建宏
展开
  • 1.西安理工大学西北旱区生态水利国家重点实验室,陕西 西安 710048
    2.西安理工大学旱区生态水文与灾害防治国家林业局重点实验室,陕西 西安 710048
    3.陕西省水资源与河库调度中心,陕西 西安 710004
杨晓亚(1999-),女,硕士研究生,主要从事水文学及水资源研究. E-mail: yangxiaoya0212@163.com
于坤霞(1989-),女,博士,副教授,主要从事水文学及水资源研究. E-mail: yukunxia@126.com

收稿日期: 2024-03-18

  修回日期: 2024-06-04

  网络出版日期: 2025-03-14

基金资助

陕西省重点研发计划项目(2023-ZDLSF-60);国家自然科学基金项目(52079104);宁夏水利科学研究院项目(SKYZY-2024005);陕西省青年科技新星项目(2024ZC-KJXX-058)

Regional differences and threshold of ecological base flow in the Qinling Mountains-Loess Plateau region

  • YANG Xiaoya ,
  • YU Kunxia ,
  • LI Zhanbin ,
  • LI Peng ,
  • LIU Yonggang ,
  • MO Shuhong ,
  • YANG Jianhong
Expand
  • 1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
    2. China Key Laboratory of National Forestry and Grassland Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
    3. Shaanxi Provincial Water Resources and River Reservoir Dispatching Center, Xi’an 710004, Shaanxi, China

Received date: 2024-03-18

  Revised date: 2024-06-04

  Online published: 2025-03-14

摘要

秦岭山区-黄土高原地质地貌连续区生态系统十分脆弱,河道生态基流及其阈值对生态系统的保护十分重要。以秦岭山区-黄土高原为研究区域,构建了涵盖气候、植被、地形地貌、土层结构、流域形态及社会经济6个方面特征的22个生态基流影响因子体系,通过构建自组织映射(SOM)神经网络和K-means聚类分析法,依据上述影响因子将秦岭山区-黄土高原划分为黄土高原中部、秦岭南麓、秦岭北麓和黄土高原西北部4个子区域,利用偏最小二乘结构方程模型(PLS-SEM)对3个子区域的生态基流影响因素进行了建模与分析。结果表明:(1) 黄土高原中部的生态基流主要受降水集中度的影响,秦岭南麓主要受年平均气温的影响,秦岭北麓主要受土壤含水量影响。(2) 不同子区域生态基流存在显著的区域性差异,黄土高原中部、秦岭南麓、秦岭北麓、黄土高原西北部生态基流占比阈值分别为7.9%、9.5%、7.5%、4.1%。(3) 考虑不同子区域生态基流对环境变化的响应差异,建立了一个可用于计算和模拟生态基流的线性回归模型,模型决定性系数均大于0.87。研究结果不仅为生态基流的量化估算提供了科学依据,也对河流健康的维护与水资源的可持续利用提供了参考,具有重要的理论与实践价值。

本文引用格式

杨晓亚 , 于坤霞 , 李占斌 , 李鹏 , 刘永刚 , 莫淑红 , 杨建宏 . 秦岭山区-黄土高原地区生态基流区域差异及其阈值研究[J]. 干旱区地理, 2025 , 48(3) : 380 -390 . DOI: 10.12118/j.issn.1000-6060.2024.179

Abstract

The Qinling Mountains-Loess Plateau geological and geomorphological continuum features a fragile ecosystem where river ecological base flow and its thresholds are critical for ecosystem protection. This study examines the Qinling Mountains-Loess Plateau region in China, constructing a system of 22 ecological base flow influencing factors, including climate, vegetation, topography, soil structure, watershed morphology, and socio-economic variables. Using a self-organizing map (SOM) neural network and K-means clustering analysis, the region was divided into four sub-regions: the central Loess Plateau, southern Qinling, northern Qinling, and northwestern Loess Plateau. Partial least squares structural equation modeling (PLS-SEM) was applied to model and analyze ecological base flow influencing factors in three sub-regions. The results indicate that: (1) Ecological base flow is primarily influenced by precipitation concentration in the central Loess Plateau, by annual mean temperature in the southern Qinling, and by soil moisture content in the northern Qinling. (2) Significant regional differences were observed in ecological base flow thresholds, with values of 7.9% for the central Loess Plateau, 9.5% for the southern Qinling, 7.5% for the northern Qinling, and 4.1% for the northwestern Loess Plateau. (3) A linear regression model was developed to calculate and simulate ecological base flow, with determination coefficients exceeding 0.87, accounting for regional differences in environmental response. These findings provide a robust scientific basis for the quantitative estimation of ecological base flow, offer insights into river health maintenance and sustainable water resource utilization, and hold substantial theoretical and practical significance.

参考文献

[1] Acreman M C, Dunbar M J. Defining environmental river flow requirements: A review[J]. Hydrology and Earth System Sciences, 2004, 8(5): 861-876.
[2] 孙然好, 魏琳沅, 张海萍, 等. 河流生态系统健康研究现状与展望——基于文献计量研究[J]. 生态学报, 2020, 40(10): 3526-3536.
  [Sun Ranhao, Wei Linruan, Zhang Haiping, et al. Current status and prospects of river ecosystem health research based on bibliometric analysis[J]. Acta Ecologica Sinica, 2020, 40(10): 3526-3536. ]
[3] 王中根, 赵玲玲, 陈庆伟, 等. 关于生态流量的概念解析[J]. 中国水利, 2020(15): 29-32.
  [Wang Zhonggen, Zhao lingling, Chen Qingwei, et al. Analysis of the ecological flow concept[J]. China Water Resources, 2020(15): 29-32. ]
[4] 易雨君, 张尚弘. 水生生物栖息地模拟方法及模型综述[J]. 中国科学: 技术科学, 2019, 49(4): 363-377.
  [Yi Yujun, Zhang Shanghong. Review of aquatic species habitat simulation method and modelling[J]. Scientia Sinica Technologica, 2019, 49(4): 363-377. ]
[5] 齐丽. 太子河上游河道内适宜生态需水分析[J]. 黑龙江水利科技, 2021, 49(4): 39-41.
  [Qi Li. Analysis of suitable ecological water demand in upper reaches of Taizi River[J]. Heilongjiang Hydraulic Science and Technology, 2021, 49(4): 39-41. ]
[6] 徐宗学, 武玮, 于松延. 生态基流研究: 进展与挑战[J]. 水力发电学报, 2016, 35(4): 1-11.
  [Xu Zongxue, Wu Wei, Yu Songyan. Ecological baseflow: Progress and challenge[J]. Journal of Hydroelectric Engineering, 2016, 35(4): 1-11. ]
[7] 周晨晖. 生态需水理论在金塔区供水工程中的应用[J]. 黑龙江水利科技, 2024, 52(3): 111-114.
  [Zhou Chenhui. Application of ecological water demand theory in water supply project of Jinta District[J]. Heilongjiang Hydraulic Science and Technology, 2024, 52(3): 111-114. ]
[8] 王一艳, 杨涛, 王伟, 等. 渭河生态基流时空分异特征及保障率分析[J]. 水资源与水工程学报, 2020, 31(3): 66-75.
  [Wang Yiyan, Yang Tao, Wang Wei, et al. Spatio-temporal differentiation characteristics and guarantee rate of the environmental flow in Weihe River[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 66-75. ]
[9] 李娟, 高建恩, 张元星, 等. 黄土高原泾河流域梯田对河道径流及生态基流影响[J]. 水土保持通报, 2015, 35(5): 106-110, 116.
  [Li Juan, Gao Jian’en, Zhang Yuanxing, et al. Effects of terrace on runoff and ecological base flow of Jinghe Watershed in Loess Plateau region[J]. Bulletin of Soil and Water Conservation, 2015, 35(5): 106-110, 116. ]
[10] 梁鹏飞, 辛惠娟, 李宗省, 等. 祁连山黑河径流变化特征及影响因素研究[J]. 干旱区地理, 2022, 45(5): 1460-1471.
  [Liang Pengfei, Xin Huijuan, Li Zongxing, et al. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains[J]. Arid Land Geography, 2022, 45(5): 1460-1471. ]
[11] 郑爱勤. 渭河关中段地下水对河流生态基流的保障研究[D]. 西安: 西安科技大学, 2013.
  [Zheng Aiqin. The guarantee of groundwater on river ecological base flow in Guanzhong section of Weihe River Basin[D]. Xi’an: Xi’an University of Science and Technology, 2013. ]
[12] 王慧娴, 杨蓓, 杨宁君, 等. 黄河流域旅游经济差异及关键驱动因素研究[J]. 干旱区地理, 2024, 47(3): 515-527.
  [Wang Huixian, Yang Bei, Yang Ningjun, et al. Tourism economic differences and key driving factors in the Yellow River Basin[J]. Arid Land Geography, 2024, 47(3): 515-527. ]
[13] Beskow S, de Mello C R, Vargas M M, et al. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions[J]. Journal of Hydrology, 2016, 541: 1406-1419
[14] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
[15] SLT712-2021. 河湖生态环境需水计算规范[S]. 北京: 中华人民共和国水利部, 2021.
  [SLT712-2021. Specification for calculation of ecological flow for rivers and lakes[S]. Beijing: The Ministry of Water Resources of the People’s Republic of China, 2021. ]
[16] Koutrouvelis I A, Canavos G C. Estimation in the Pearson type 3 distribution[J]. Water Resources Research, 1999, 35(9): 2693-2704.
[17] Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43(1): 59-69.
[18] Park Y S, Céréghino R, Compin A, et al. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters[J]. Ecological Modelling, 2003, 160(3): 265-280.
[19] Hentati A, Kawamura A, Amaguchi H, et al. Evaluation of sedimentation vulnerability at small hillside reservoirs in the semi-arid region of Tunisia using the self-organizing map[J]. Geomorphology, 2010, 122(1-2): 56-64.
[20] Davies D L, Bouldin D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979(2): 224-227.
[21] Sarstedt M, Ringle C M, Hair J F. Partial least squares structural equation modeling[M]. Cham: Springer, 2021: 587-632.
[22] Calantone R J, Graham J L, Mintu-wimsatt A. Problem-solving approach in an international context: Antecedents and outcome[J]. International Journal of Research in Marketing, 1998, 15(1): 19-35.
[23] 刘欢, 胡鹏, 王建华, 等. 中国河流分区分类生态基流占比阈值确定[J]. 南水北调与水利科技, 2022, 20(4): 748-756.
  [Liu Huan, Hu Peng, Wang Jianhua, et al. Determination of the proportion thresholds of ecological base flow in rivers with different scales in different watersheds of China[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(4): 748-756. ]
[24] 曹原, 李娅芸. 陕西省渭河控制断面生态流量目标及调度措施[J]. 地下水, 2024, 46(2): 240-242.
  [Cao Yuan, Li Yayun. Ecological flow objectives and management for Wei River control points in Shaanxi Province[J]. Ground Water, 2024, 46(2): 240-242. ]
[25] 王小帆, 苗磊, 翟城武. 基于无定河生态流量保障的水资源调度研究[J]. 陕西水利, 2024(4): 32-35.
  [Wang Xiaofan, Miao Lei, Zhai Chengwu. Research on water resources regulation based on the guarantee of ecological flow in Wuding River Basin[J]. Shaanxi Water Resources, 2024(4): 32-35. ]
[26] Liu H, Hu P, Wang J H, et al. A flexible framework for regionalization of base flow for river habit maintenance and its thresholds[J]. Science of the Total Environment, 2023, 876: 162748, doi: 10.1016/j.scitotenv.2023.162748.
[27] 李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素[J]. 生态学报, 2020, 40(23): 8593-8605.
  [Li Ting, Lü Yihe, Ren Yanjiao, et al. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8593-8605. ]
[28] Price K. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review[J]. Progress in Physical Geography, 2011, 35(4): 465-492.
[29] Lei H M, Yang D W, Huang M Y. Impacts of climate change and vegetation dynamics on runoff in the mountainous region of the Haihe River Basin in the past five decades[J]. Journal of Hydrology, 2014, 511: 786-799.
[30] 冯憬, 卫伟, 冯青郁. 黄土丘陵区SCS-CN模型径流曲线数的计算与校正[J]. 生态学报, 2021, 41(10): 4170-4181.
  [Feng Jing, Wei Wei, Feng Qingyu. The runoff curve number of SCS-CN method in loess hilly region[J]. Acta Ecologica Sinica, 2021, 41(10): 4170-4181. ]
[31] 宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635-1641.
  [Song Linhui, Huang Qiang, Yan Di, et al. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. ]
[32] 傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 38(8): 1110-1117.
  [Fu Bojie, Liu Yansui, Cao Zhi, et al. Current conditions, issues, and suggestions for ecological protection and high-quality development in Loess Plateau[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(8): 1110-1117. ]
[33] Wu Y R, Zhang H B, Lan T, et al. Attribution of runoff variation to climate and human-driven changes in the transition zone between the Qinling Mountains and the Loess Plateau under vegetation greening[J]. Hydrology Research, 2022, 53(5): 733-753.
[34] Xiao T, Li P, Fei W B, et al. Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review[J]. Science of the Total Environment, 2024, 906: 167524, doi: 10.1016/j.scitotenv.2023.167524.
文章导航

/