土壤生态

黑河下游胡杨林土壤碳空间分异特征及其影响因素

  • 殷一丹 ,
  • 鱼腾飞 ,
  • 韩拓 ,
  • 谭天逸 ,
  • 陈小玲
展开
  • 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.中国科学院西北生态环境资源研究院干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000
    4.中国科学院西北生态环境资源研究院阿拉善荒漠生态水文试验研究站,甘肃 兰州 730000
    5.额济纳旗林业和草原局,内蒙古 阿拉善 737300
殷一丹(2000-),女,硕士研究生,主要从事干旱区碳循环方面的研究. E-mail: yinyidan@nieer.ac.cn
鱼腾飞(1987-),男,副研究员,主要从事干旱区生态水文和生态恢复方面的研究. E-mail: yutf@lzb.ac.cn

收稿日期: 2024-02-28

  修回日期: 2024-05-21

  网络出版日期: 2025-01-21

基金资助

阿拉善盟科技计划项目(AMTM2022-2);内蒙古自治区关键技术攻关项目(2020GG0306)

Spatial differentiation and its influencing factors of soil carbon in Populus euphratica Oliv. forest in the lower reach of Heihe River

  • YIN Yidan ,
  • YU Tengfei ,
  • HAN Tuo ,
  • TAN Tianyi ,
  • CHEN Xiaoling
Expand
  • 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    4. Alxa Desert Eco-Hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    5. Ejin Banner Forestry and Grassland Bureau, Alagxa 737300, Inner Mongolia, China

Received date: 2024-02-28

  Revised date: 2024-05-21

  Online published: 2025-01-21

摘要

荒漠河岸林土壤碳的分布受到多重因素的影响。以黑河下游额济纳绿洲为研究区域,通过采集20个胡杨林样地0~100 cm土层土壤样品,研究了土壤有机碳(SOC)、土壤无机碳(SIC)的空间分异特征及其影响因素。结果表明:(1) 0~100 cm SOC和SIC均值分别为2.90 g·kg-1和10.79 g·kg-1,SIC为SOC的3.72倍。(2) 垂直方向上SOC和SIC随土壤深度增加而减少,水平方向上从东河上段至下段SOC与SIC虽然均呈现减少趋势,但SIC总量仍大于SOC,说明SIC是干旱区内陆河下游土壤碳的主要赋存形式。(3) 土壤理化性质对SOC的解释程度较高,而对SIC的解释程度较低。其中,土壤化学性质(EC、Na+、SO42-、Cl-、Ca2+、Mg2+、K+)对SOC的影响程度最大。综上,黑河流域下游荒漠河岸林土壤碳库是以SIC为主,且在水平和垂直方向存在明显的空间分异,土壤理化性质对SOC和SIC空间分异的影响存在差异。其中,碱性阳离子是影响SOC的主要因素,而土壤砂粒含量和容重是影响SIC的主要因素。

本文引用格式

殷一丹 , 鱼腾飞 , 韩拓 , 谭天逸 , 陈小玲 . 黑河下游胡杨林土壤碳空间分异特征及其影响因素[J]. 干旱区地理, 2025 , 48(1) : 94 -104 . DOI: 10.12118/j.issn.1000-6060.2024.125

Abstract

The distribution of soil carbon in desert riparian forests is shaped by multiple factors. This study examines the Ejina Oasis in the lower reaches of the Heihe River, China. Soil samples from 20 Populus euphratica Oliv. plots at depths of 0-100 cm were analyzed to investigate the spatial variation of soil organic carbon (SOC) and soil inorganic carbon (SIC) and their influencing factors. The results reveal: (1) The mean SOC and SIC contents in the 0-100 cm soil layer were 2.90 g·kg-1 and 10.79 g·kg-1, respectively, with SIC being 3.72 times of SOC. (2) Vertically, both SOC and SIC contents exhibited a declining trend with increasing soil depth, while horizontally, SOC and SIC from the upper to lower sections of East River of the Heihe River show a decreasing trend, but the total amount of SIC is still greater than SOC. This suggests that inorganic carbon predominates in the lower reaches of inland rivers in arid regions. (3) Soil physical and chemical properties showed a stronger explanatory power for SOC, whereas their influence on SIC was comparatively lower. Specifically, soil chemical properties such as electrical conductivity (EC), sodium ion (Na+), sulfate (SO42-), chloride ion (Cl-), calcium ion (Ca2+), magnesium ion (Mg2+), and potassium ion (K+) had the most significant influence on SOC. In conclusion, the soil carbon pool in desert riparian forests in the lower reaches of inland river basins in arid areas is predominantly composed of SIC, with notable spatial variations in both horizontal and vertical directions. Basic cations are identified as the primary factor influencing SOC spatial differentiation, while soil sand content and bulk density are the key factors affecting SIC spatial differentiation.

参考文献

[1] 高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应—以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
  [Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
[2] Zhang T J, Chen Y N, Ali S. Abiotic stress and human activities reduce plant diversity in desert riparian forests[J]. Ecological Indicators, 2023, 152: 110340, doi: 10.1016/j.ecolind.2023.110340.
[3] 杨玉海, 李卫红, 李慧敏, 等. 塔里木河下游退化生态系统恢复对土壤有机碳的影响[J]. 土壤通报, 2010, 41(4): 855-859.
  [Yang Yuhai, Li Weihong, Li Huimin, et al. Impacts of degraded ecological system restoration on soil organic carbon in inland basin of Tarim River[J]. Chinese Journal of Soil Science, 2010, 41(4): 855-859.]
[4] 马继龙, 史军辉, 王新英, 等. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257.
  [Ma Jilong, Shi Junhui, Wang Xinying, et al. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River[J]. Arid Zone Research, 2023, 40(8): 1248-1257.]
[5] 史尧方, 薛娴, 尤全刚, 等. 阿里荒漠区土壤有机碳分布特征及其与土壤物理性质的关系[J]. 中国沙漠, 2023, 43(3): 284-294.
  [Shi Yaofang, Xue Xian, You Quangang, et al. Distribution characteristics of soil organic carbon and its relationship with soil physical properties in Ali Desert area, Tibetan Plateau[J]. Journal of Desert Research, 2023, 43(3): 284-294.]
[6] Plaza C, Zaccone C, Sawicka K, et al. Soil resources and element stocks in drylands to face global issues[J]. Scientific Reports, 2018, 8: 13788, doi: 10.1038/s41598-018-32229-0.
[7] Lal R. Carbon sequestration in dryland ecosystems[J]. Environ-mental Management, 2004, 33(4): 528-544.
[8] Mi N, Wang S Q, Liu J Y, et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 2008, 14(10): 2380-2387.
[9] Song X D, Yang F, Wu H Y, et al. Significant loss of soil inorganic carbon at the continental scale[J]. National Science Review, 2021, 9(2): nwab120, doi: 10.1093/nsr/nwab120.
[10] Sparks D L. Advances in agronomy[M]. London: Academic Press, 2023: 229-265.
[11] Huang Y Y, Song X D, Wang Y P, et al. Size, distribution, and vulnerability of the global soil inorganic carbon[J]. Science, 2024, 384(6692): 233-239.
[12] Yusup A, Halik ü, Abliz A, et al. Population structure and spatial distribution pattern of Populus euphratica riparian forest under environmental heterogeneity along the Tarim River, northwest China[J]. Frontiers in Plant Science, 2022, 13: 844819, doi: 10.3389/fpls.2022.844819.
[13] Peng Y, He G J, Wang G Z. Spatial-temporal analysis of the changes in Populus euphratica distribution in the Tarim National Nature Reserve over the past 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 103000, doi: 10.1016/j.jag.2022.103000.
[14] 韩路, 冯宇, 李沅楷, 等. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102.
  [Han Lu, Feng Yu, Li Yuankai, et al. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China[J]. Chinese Journal of Plant Ecology, 2024, 48(1): 92-102.]
[15] 王振, 李均力, 张久丹, 等. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102.
  [Wang Zhen, Li Junli, Zhang Jiudan, et al. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River[J]. Arid Land Geography, 2023, 46(1): 94-102.]
[16] Dong L W, Sun Y, Ran J Z, et al. Ecosystem organic carbon storage and their drivers across the drylands of China[J]. Catena, 2022, 214: 106280, doi: 10.1016/j.catena.2022.106280.
[17] Wei G R, Zhang C L, Li Q, et al. An evaluation of topsoil carbon storage in Chinese deserts[J]. Science of the Total Environment, 2023, 872: 162284, doi: 10.1016/j.scitotenv.2023.162284.
[18] Zhang Z P, Ding J L, Zhu C M, et al. Changes in soil organic carbon stocks from 1980—1990 and 2010—2020 in the northwest arid zone of China[J]. Land Degradation & Development, 2022, 33(15): 2713-2727.
[19] 陈雨晴, 席海洋, 程文举, 等. 荒漠河岸林区3种典型植物群落下土壤碳氮含量特征[J]. 中国沙漠, 2023, 43(1): 150-159.
  [Chen Yuqing, Xi Haiyang, Cheng Wenju, et al. Characteristics of soil carbon and nitrogen change in three typical plant communities in desert riparian forest area[J]. Journal of Desert Research, 2023, 43(1): 150-159.]
[20] Yu T F, Feng Q, Si J H, et al. Flooding constrains tree water use of a riparian forest in the lower Heihe River Basin, northwest China[J]. Science of the Total Environment, 2021, 760: 144069, doi: 10.1016/j.scitotenv.2020.144069.
[21] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2011: 47-70.
  [Zhang Ganlin, Gong Zitong. Soil survey laboratory methods[M]. Beijing: Science Press, 2011: 47-70.]
[22] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 120-147.
  [Bao Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000: 120-147.]
[23] 贡璐, 朱美玲, 刘曾媛, 等. 塔里木盆地南缘典型绿洲土壤有机碳、无机碳与环境因子的相关性[J]. 环境科学, 2016, 37(4): 1516-1522.
  [Gong Lu, Zhu Meiling, Liu Zengyuan, et al. Correlation among soil organic carbon, soil inorganic carbon and the environmental factors in a typical oasis in the southern edge of the Tarim Basin[J]. Environmental Science, 2016, 37(4): 1516-1522.]
[24] 杨洋, 张心昱, 苏文, 等. 新疆农田和荒漠生态系统土壤有机碳储量及影响因素分析[J]. 生态学报, 2024, 44(14): 1-12.
  [Yang Yang, Zhang Xinyu, Su Wen, et al. Soil organic carbon storage and its influencing factors in farmland and desert ecosystems in Xinjiang[J]. Acta Ecologica Sinica, 2024, 44(14): 1-12.]
[25] 侯浩, 张宋智, 关晋宏, 等. 小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征[J]. 生态学报, 2016, 36(24): 8025-8033.
  [Hou Hao, Zhang Songzhi, Guan Jinhong, et al. Accumulation of soil organic carbon and total nitrogen in Quercus aliena var. acuteserrata forests at different age stages in the Xiaolongshan Mountains, Gansu Province[J]. Acta Ecologica Sinica, 2016, 36(24): 8025-8033.]
[26] 雒琼, 王玉刚, 邓彩云, 等. 干旱区土壤剖面无机碳分布及其与盐碱性的关系[J]. 水土保持学报, 2017, 31(5): 240-246.
  [Luo Qiong, Wang Yugang, Deng Caiyun, et al. Distribution of inorganic carbon in soil profile and its relationship with soil saline-alkali property in arid area[J]. Journal of Soil and Water Conservation, 2017, 31(5): 240-246.]
[27] 张宇恒, 刘春, 付智勇, 等. 坡面水文过程与土壤有机碳迁移研究进展[J]. 土壤通报, 2023, 54(3): 730-738.
  [Zhang Yuheng, Liu Chun, Fu Zhiyong, et al. Research progress of hydrological process and soil organic carbon migration in slope field[J]. Chinese Journal of Soil Science, 2023, 54(3): 730-738.]
[28] Zhou H, Gan F L, Dai Q H, et al. Migration of dissolved carbon on bare karst slopes in soil in response to natural rainfall events[J]. Geoderma, 2023, 436: 116527, doi: 10.1016/j.geoderma.2023.116527.
[29] Hassani A, Smith P, Shokri N. Negative correlation between soil salinity and soil organic carbon variability[J]. Proceedings of the National Academy of Sciences, 2024, 121(18): e2317332121, doi: 10.1073/pnas.2317332121.
[30] Yang R M, Yang F. Impacts of Spartina alterniflora invasion on soil inorganic carbon in coastal wetlands in China[J]. Soil Science Society of America Journal, 2020, 84(3): 844-855.
[31] Huang P, Zhang J B, Xin X L, et al. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. Journal of Integrative Agriculture, 2015, 14(1): 148-157.
[32] Harley A D, Gilkes R J. Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview[J]. Nutrient Cycling in Agroecosystems, 2000, 56: 11-36.
[33] Pan J X, Wang J S, Tian D S, et al. Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands[J]. Soil, 2022, 8(2): 687-698.
[34] Gao Y, Dang P, Zhao Q X, et al. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China[J]. Land Degradation & Development, 2018, 29(4): 1031-1040.
[35] de Nijs E A, Cammeraat E L. The stability and fate of soil organic carbon during the transport phase of soil erosion[J]. Earth-Science Reviews, 2020, 201: 103067, doi: 10.1016/j.earscirev.2019.103067.
[36] Tong L S, Fang N F, Xiao H B, et al. Sediment deposition changes the relationship between soil organic and inorganic carbon: Evidence from the Chinese Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2020, 302: 107076, doi: 10.1016/j.agee.2020.107076.
文章导航

/