土壤生态

基于二次平均状态的土地砾化程度监测评估研究

  • 叶虎 ,
  • 裴浩 ,
  • 苗百岭 ,
  • 姜艳丰 ,
  • 徐丽娜 ,
  • 贾成朕
展开
  • 1.内蒙古自治区气象服务中心,内蒙古 呼和浩特 010051
    2.内蒙古自治区荒漠生态气象中心,内蒙古 呼和浩特 010051
    3.内蒙古自治区气象局,内蒙古 呼和浩特 010051
    4.内蒙古自治区气象科学研究所,内蒙古 呼和浩特 010051
叶虎(1980-),男,硕士,高级工程师,主要从事专业气象应用技术研究. E-mail: yehu_135@sina.com.cn
裴浩(1963-),男,硕士,正研,主要从事生态、遥感技术研究. E-mail: peihao5217@sohu.com

收稿日期: 2024-01-19

  修回日期: 2024-05-09

  网络出版日期: 2025-01-21

基金资助

内蒙古自治区科技计划项目(2020GG0092);内蒙古自治区科技计划项目(2021GG0307);内蒙古自治区气象局防灾减灾专项资助

Monitoring and evaluation of land gravel coverage based on secondary average state

  • YE Hu ,
  • PEI Hao ,
  • MIAO Bailing ,
  • JIANG Yanfeng ,
  • XU Lina ,
  • JIA Chengzhen
Expand
  • 1. Inner Mongolia Service Center of Meteorology, Hohhot 010051, Inner Mongolia, China
    2. Inner Mongolia Desert Ecological Meteorological Center, Hohhot 010051, Inner Mongolia, China
    3. Inner Mongolia Meteorological Bureau, Hohhot 010051, Inner Mongolia, China
    4. Inner Mongolia Meteorological Science Research Institute, Hohhot 010051, Inner Mongolia, China

Received date: 2024-01-19

  Revised date: 2024-05-09

  Online published: 2025-01-21

摘要

为了从取样、测量到评估分析全流程提高土地砾化程度监测指标——地表砾石覆盖度的监测评估精度,以内蒙古高原西部的阿拉善盟和巴彦淖尔市为研究区,设计不同尺寸的样方,开展二次平均状态取样方法研究。采用地面测量法和测量盘法对比确定小样方中砾石覆盖度的最佳测量方法,通过大、小样方平均数和中位数的统计特征分析确定大样方及样地砾石覆盖度的最佳评估方式。同时,探讨了构建“仿生态学”的必要性和初步思路。结果表明:(1) 二次平均状态法通过缩减样方尺寸、增加样本数量的方式,使样本更具代表性,且样方尺寸的减小可使测量盘的尺寸随之缩减,有助于进一步提高地表砾石覆盖度测量精度。(2) 由小样方到大样方再到样地,数据的离散程度越来越小,右偏及尖峰型分布越来越明显,研究区砾化程度的总体特征越来越凸显,同时大样方及样地的砾石覆盖度、地表单位面积砾石质量相关性较高,说明基于二次平均状态取样的土地砾化程度监测结果具有较高的精确度和稳定性,可用于改进土地砾化程度监测流程及精度,并提高野外工作效率。

本文引用格式

叶虎 , 裴浩 , 苗百岭 , 姜艳丰 , 徐丽娜 , 贾成朕 . 基于二次平均状态的土地砾化程度监测评估研究[J]. 干旱区地理, 2025 , 48(1) : 85 -93 . DOI: 10.12118/j.issn.1000-6060.2024.045

Abstract

To enhance the accuracy of monitoring and assessing surface gravel coverage throughout the sampling, measurement, and evaluation process, Alagxa League and Bayannur City in the western Inner Mongolian Plateau, China, were selected as the study area. Various sample sizes were designed, and research on the sampling method of the secondary average state was conducted. The optimal measurement method for small sample gravel coverage was determined by comparing the measurement disk method with the ground measurement method. The most suitable evaluation method for large sample gravel coverage was identified by analyzing the statistical characteristics of the average and median gravel coverage values in small samples. The same methodology was applied to evaluate the gravel coverage in sample plots. Additionally, the necessity and preliminary considerations for constructing imitative ecology are discussed. The results showed that: (1) The secondary average state method enhances sample representativeness through two pathways—reducing sample sizes while increasing sample quantities. Consequently, the size of the measurement disk is reduced, which further improves the accuracy of surface gravel coverage measurements. (2) Data dispersion decreases, and the characteristics of right-skewed and peaked distributions become more prominent progressively for small samples, large samples, and sample plots. This indicates that the overall characteristics of gravelized land in the study area become increasingly distinct. Gravel coverage is strongly correlated with the surface gravel mass per unit area, demonstrating that the secondary average state sampling yields highly accurate and stable results. These findings can significantly improve the procedures and accuracy of land gravelization measurement and enhance the efficiency of fieldwork.

参考文献

[1] Miller F T, Guthrie R L. Classification and distribution of soils containing rock fragments in the United States[J]. Soil Science Society of America Journal, 1984, 13: 1-6.
[2] 谢迎革, 李霞. 土壤中砾石含量的测定方法研究进展[J]. 土壤, 2012, 44(1): 17-22.
  [Xie Yingge, Li Xia. Methodology on rock fragments content evaluation: A review[J]. Soils, 2012, 44(1): 17-22.]
[3] 裴浩, 吴昊, 关彦如, 等. 土地沙化定义及其与沙被、草原退化、荒漠化关系的探讨[J]. 内蒙古气象, 2022(1): 16-23.
  [Pei Hao, Wu Hao, Guan Yanru, et al. Definition of land sandification and its relationship with desertification, grassland degradation and desertification[J]. Meteorology Journal of Inner Mongolia, 2022(1): 16-23.]
[4] 苗百岭, 裴浩, 贾成朕, 等. 砾化土地类型、监测指标及生态治理对策[J]. 内蒙古气象, 2021(6): 37-43.
  [Miao Bailing, Pei Hao, Jia Chengzhen, et al. Classification, monitoring indicators and ecologically-based management of gravelization land[J]. Meteorology Journal of Inner Mongolia, 2021(6): 37-43.]
[5] 高杨, 符素华, 罗来军, 等. 北京山区砾石覆盖度和砾石含量的关系研究[J]. 水土保持研究, 2011, 18(4): 145-149.
  [Gao Yang, Fu Suhua, Luo Laijun, et al. Study on the relationship between rock fragments cover and weight percentage in Beijing mountain[J]. Research of Soil and Water Conservation, 2011, 18(4): 145-149.]
[6] 温文杰, 裴浩, 巴根, 等. 阿拉善高原土地砾化特征及监测指标[J]. 干旱区研究, 2023, 40(6): 926-936.
  [Wen Wenjie, Pei Hao, Ba Gen, et al. Land graveling characteristics and monitoring indicators of the Alxa Plateau[J]. Arid Zone Research, 2023, 40(6): 926-936.]
[7] 高杨, 符素华, 罗来军, 等. 砾石覆盖度测量方法研究[J]. 水土保持通报, 2013, 33(4): 264-267, 270.
  [Gao Yang, Fu Suhua, Luo Laijun, et al. A study on measurement methods of rock fragment cover[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 264-267, 270.]
[8] 张克存, 张伟民, 屈建军, 等. 不同砾石盖度戈壁床面动力学特征研究[J]. 干旱区研究, 2012, 29(6): 1077-1082.
  [Zhang Kecun, Zhang Weimin, Qu Jianjun, et al. Study on dynamaic properties of gobi surface with different gravel coverage[J]. Arid Zone Research, 2012, 29(6): 1077-1082.]
[9] Mu Y, Wang F, Zheng B Y, et al. McGET: A rapid image-based method to determine the morphological characteristics of gravels on the gobi desert surface[J]. Geomorphology, 2018, 304: 89-98.
[10] 高君亮, 高永, 吴波, 等. 戈壁地表土壤颗粒的空间变异特征研究[J]. 土壤, 2019, 51(1): 135-141.
  [Gao Junliang, Gao Yong, Wu Bo, et al. Spatial heterogeneity of topsoil particles in Jartai Gobi, Inner Mongolia[J]. Soils, 2019, 51(1): 135-141.]
[11] 黄佳轮, 安凯旋, 陈汉林, 等. 野外砾石统计方法的应用与对比[J]. 浙江大学学报(理学版), 2020, 47(5): 601-614.
  [Huang Jialun, An Kaixuan, Chen Hanlin, et al. Application and comparison of field gravel statistical methods[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 601-614.]
[12] 中国黑戈壁地区生态本底科学考察队. 中国黑戈壁研究[M]. 北京: 科学出版社, 2014.
  [Scientific Team of Ecological Background in Black Gobi Area of China. A study on the Black Gobi in China[M]. Beijing: Science Press, 2014.]
[13] 张正偲, 潘凯佳, 张焱, 等. 中国西北戈壁区沙尘暴过程中近地层风沙运动特征[J]. 中国沙漠, 2023, 43(2): 130-138.
  [Zhang Zhengcai, Pan Kaijia, Zhang Yan, et al. Sand transport characteristics above gobi surface during a dust storm in northern China[J]. Journal of Desert Research, 2023, 43(2): 130-138.]
[14] 陈曦, 胡汝骥, 姜逢清, 等. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010.
  [Chen Xi, Hu Ruji, Jiang Fengqing, et al. Natural geography of arid areas in China[M]. Beijing: Science Press, 2010.]
[15] 王鹿振. 基于数字图像处理的风蚀地表粗化信息提取研究[D]. 北京: 中国林业科学研究院, 2010.
  [Wang Luzhen. Grain size information acquision from erodible sandy surfaces based on digital image processing[D]. Beijing: Chinese Academy of Forestry, 2010.]
[16] 高君亮, 高永, 虞毅, 等. 基于数字图像处理技术的风蚀地表颗粒提取[J]. 水土保持通报, 2011, 31(6): 139-142.
  [Gao Junliang, Gao Yong, Yu Yi, et al. Particles extracted from wind erosion surface based on digital image process technology[J]. Bulletin of Soil and Water Conservation, 2011, 31(6): 139-142.]
[17] 钱广强, 董治宝, 罗万银, 等. 基于数字图像的中国西北地区戈壁表面砾石形貌特征研究[J]. 中国沙漠, 2014, 34(3): 625-633.
  [Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Gravel morphometric analysis based on digital images of different gobi surface in northwestern China[J]. Journal of Desert Research, 2014, 34(3): 625-633.]
[18] 陈谢扬, 李同昇, 朱小青, 等. 基于实际调查与观测解译对比验证的土地沙漠化敏感性评价——以陕西省为例[J]. 干旱区地理, 2023, 46(11): 1813-1825.
  [Chen Xieyang, Li Tongsheng, Zhu Xiaoqing, et al. Evaluation of land desertification sensitivity based on comparison and verification of actual investigation and observation interpretation: A case of Shaanxi Province[J]. Arid Land Geography, 2023, 46(11): 1813-1825.]
文章导航

/