区域发展

黄河流域城市生态韧性、社会网络及其影响因素分析

  • 张傲翔 ,
  • 苗成林 ,
  • 陈峥妍
展开
  • 1.安徽理工大学经济与管理学院,安徽 淮南 232001
    2.山东工商学院工商管理学院,山东 烟台 264005
张傲翔(1998-),男,硕士研究生,主要从事技术创新与管理研究. E-mail: aoxiangzhg@163.com
苗成林(1980-),男,博士,教授,主要从事绿色低碳发展、创新管理与政策研究. E-mail: chlmiaostbu@163.com

收稿日期: 2024-02-20

  修回日期: 2024-04-11

  网络出版日期: 2025-01-21

基金资助

国家自然科学基金面上项目(72173073);国家自然科学基金面上项目(51774013);国家自然科学基金面上项目(71503003);2021年度烟台市校地融合发展项目(2021XDRHXMXK06);安徽理工大学2023年研究生创新基金项目(2023CX2168)

Urban ecological resilience, social networks and its influencing factors in the Yellow River Basin

  • ZHANG Aoxiang ,
  • MIAO Chenglin ,
  • CHEN Zhengyan
Expand
  • 1. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, Anhui, China
    2. School of Business Administration, Shandong Technology and Business University, Yantai 264005, Shandong, China

Received date: 2024-02-20

  Revised date: 2024-04-11

  Online published: 2025-01-21

摘要

分析城市生态韧性的社会网络以及影响因素有助于促进区域绿色协同发展。选取黄河流域63个地级市2012—2021年相关数据,构建压力-状态-反应模型。采用CRITIC-TOPSIS、引力模型、多尺度地理加权回归模型分析黄河流域城市生态韧性、联动关系以及影响因素。结果表明:(1) 黄河流域生态韧性总体在0.5左右波动,表现为“上游>下游>中游”,各流域年平均涨幅分别为0.41%、0.30%、0.40%。(2) 黄河流域大致可分为7个主要城市网络(N1~N7),上、中、下游的流域聚集程度和城市关联程度依次不断升高。(3) 考虑直接作用、调节作用以及替代效应的影响,产业结构高级化对城市网络N1~N4的城市生态韧性提升作用更大,影响系数分别为0.4213、0.4210、0.5085、0.8883,而产业结构合理化更有利于提升城市网络N5~N7的城市生态韧性,影响系数分别为0.8483、0.5669、0.8128。

本文引用格式

张傲翔 , 苗成林 , 陈峥妍 . 黄河流域城市生态韧性、社会网络及其影响因素分析[J]. 干旱区地理, 2025 , 48(1) : 130 -142 . DOI: 10.12118/j.issn.1000-6060.2024.101

Abstract

The social network of urban ecological resilience and its influencing factors were analyzed to promote regional green synergistic development. Data from 2012 to 2021 for 63 prefecture-level cities in the Yellow River Basin, China, were used to construct a pressure-state-response model. The CRITIC-TOPSIS method, gravity model, and multi-scale geographic weighting model were applied to examine the ecological resilience of cities in the Yellow River Basin, the linkage relationships, and the influencing factors. The results reveal the following: (1) The ecological resilience of the Yellow River Basin fluctuates around 0.5, with the pattern “upstream>downstream>midstream”, and the average annual increase rates of each river reach was 0.41%, 0.30%, and 0.40%, respectively. (2) The Yellow River Basin is divided into seven major city networks (N1-N7). The degree of basin agglomeration and city association increases sequentially from the upper to the lower reaches. (3) Considering the influence of direct effect, regulatory effect and substitution effect, industrial structure upgrades significantly enhance the urban ecological resilience of city networks N1-N4, with impact coefficients of 0.4213, 0.4210, 0.5085, and 0.8883, respectively. In contrast, industrial structure rationalization more effectively enhances the ecological resilience of city networks N5-N7, with impact coefficients of 0.8483, 0.5669, and 0.8128.

参考文献

[1] 赵领娣, 孙兆旭. 海岸带城市经济发展质量与生态韧性协同发展演化及空间收敛特征[J]. 经济地理, 2023, 43(7): 119-129, 240.
  [Zhao Lingdi, Sun Zhaoxu. Evolution of coordinated development between economic development quality and ecological resilience in coastal cities and its spatial convergence features[J]. Economic Geography, 2023, 43(7): 119-129, 240.]
[2] 吕添贵, 胡晗, 付舒斐, 等. 长三角地区城市生态韧性时空分异特征及影响因素[J]. 地域研究与开发, 2023, 42(1): 54-60.
  [Lü Tiangui, Hu Han, Fu Shufei, et al. Spatio-temporal differentiation and influencing factors of urban ecological resilience in the Yangtze River Delta[J]. Areal Research and Development, 2023, 42(1): 54-60.
[3] 夏楚瑜, 董照樱子, 陈彬. 城市生态韧性时空变化及情景模拟研究——以杭州市为例[J]. 生态学报, 2022, 42(1): 116-126.
  [Xia Chuyu, Dong Zhaoyingzi, Chen Bin. Spatio-temporal analysis and simulation of urban ecological resilience: A case study of Hangzhou[J]. Acta Ecologica Sinica, 2022, 42(1): 116-126.]
[4] 陈强强, 杨凌. 近30 a黄河流域人地系统研究: 脉络、热点及展望[J]. 干旱区地理, 2023, 46(10): 1692-1703.
  [Chen Qiangqiang, Yang Ling. Studies of the human-land system in the Yellow River Basin for 30 years: Context, hotspots and prospects[J]. Arid Land Geography, 2023, 46(10): 1692-1703.]
[5] 王松茂, 牛金兰. 山东半岛城市群城市生态韧性的动态演化及障碍因子分析[J]. 经济地理, 2022, 42(8): 51-61.
  [Wang Songmao, Niu Jinlan. Dynamic evolution and obstacle factors of urban ecological resilience in Shandong Peninsula urban agglomeration[J]. Economic Geography, 2022, 42(8): 51-61.]
[6] 于法稳, 方兰. 黄河流域生态保护和高质量发展的若干问题[J]. 中国软科学, 2020(6): 85-95.
  [Yu Fawen, Fang Lan. Issues regarding the ecological protection and high-quality development of Yellow River Basin[J]. China Soft Science, 2020(6): 85-95.]
[7] 安树伟, 李瑞鹏. 黄河流域高质量发展的内涵与推进方略[J]. 改革, 2020(1): 76-86.
  [An Shuwei, Li Ruipeng. Intension and promotion strategy of high-quality development in the Yellow River Basin[J]. Reform, 2020(1): 76-86.]
[8] 李连刚, 张平宇, 谭俊涛, 等. 韧性概念演变与区域经济韧性研究进展[J]. 人文地理, 2019, 34(2): 1-7, 151.
  [Li Liangang, Zhang Pingyu, Tan Juntao, et al. Review on the evolution of resilience concept and research progress on regional economic resilience[J]. Human Geography, 2019, 34(2): 1-7, 151.]
[9] Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology & Systematics, 1973, 4(1): 1-23.
[10] Zeng X, Yu Y C, Yang S, et al. Urban resilience for urban sustainability: Concepts, dimensions, and perspectives[J]. Sustainability, 2022, 14(5): 2481, doi: 10.3390/su14052481.
[11] Folke C, Carpenter S R, Walker B, et al. Resilience thinking: Integrating resilience, adaptability and transformability[J]. Ecology and Society, 2010, 15(4): 20, doi: 10.5751/ES-03610-150420.
[12] Esteve V, Roser M, Martí R, et al. Reviewing social-ecological resilience for agroforestry systems under climate change conditions[J]. Science of the Total Environment, 2023, 869: 161763, doi: 10.1016/j.scitotenv.2023.161763.
[13] 陶洁怡, 董平, 陆玉麒. 长三角地区生态韧性时空变化及影响因素分析[J]. 长江流域资源与环境, 2022, 31(9): 1975-1987.
  [Tao Jieyi, Dong Ping, Lu Yuqi. Spatial-temporal analysis and influencing factors of ecological resilience in Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin, 2022, 31(9): 1975-1987.]
[14] 张明斗, 任衍婷. 环境规制对生态韧性的影响——基于“本地—邻地”效应的视角[J]. 北京理工大学学报(社会科学版), 2022, 24(6): 16-29.
  [Zhang Mingdou, Ren Yanting. Impact of environmental regulation on ecological resilience: A perspective of “local-neighborhood” effect[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(6): 16-29.]
[15] 周成, 赵亚玲, 张旭红, 等. 黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J]. 干旱区地理, 2023, 46(9): 1514-1523.
  [Zhou Cheng, Zhao Yaling, Zhang Xuhong, et al. Spatiotemporal evolutionary characteristics and coordinated development of urban ecological resilience and efficiency in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(9): 1514-1523.]
[16] 周文慧, 钞小静. 黄河流域数字基础设施、经济发展韧性与生态环境保护的耦合协调发展分析——基于三元系统耦合协调模型[J]. 干旱区资源与环境, 2023, 37(9): 1-9.
  [Zhou Wenhui, Chao Xiaojing. Coupling coordinated development of digital infrastructure, economic resilience and environmental protection in the Yellow River Basin: An approach of ternary system coupling coordination model[J]. Journal of Arid Land Resources and Environment, 2023, 37(9): 1-9.]
[17] 孙宇, 刘维忠, 盛洋. 基于PSR模型的新疆水资源经济生态韧性时空差异及影响因素分析[J]. 干旱区地理, 2023, 46(12): 2017-2028.
  [Sun Yu, Liu Weizhong, Sheng Yang. Spatiotemporal differences and influencing factors of economic and ecological resilience of water resources in Xinjiang based on the PSR model[J]. Arid Land Geography, 2023, 46(12): 2017-2028.]
[18] 牛建广, 辛伯雄, 王明琪. 城市生态效率与生态韧性的协调发展评价与障碍因子识别[J]. 统计与决策, 2024, 40(4): 79-84.
  [Niu Jianguang, Xin Boxiong, Wang Mingqi. Coordinated development evaluation and obstacle factors identification of urban eco-efficiency and ecological resilience[J]. Statistics & Decision, 2024, 40(4): 79-84.]
[19] Li G Z, Wang L Q. Study of regional variations and convergence in ecological resilience of Chinese cities[J]. Ecological Indicators, 2023, 154: 110667, doi: 10.1016/j.ecolind.2023.110667.
[20] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method[J]. Computers & Operations Research, 1995, 22(7): 763-770.
[21] 迟国泰, 芦丹, 孙秀峰. 基于城市差异系数的城市商业银行效率评价模型及实证研究[J]. 管理工程学报, 2007(3): 29-34, 55.
  [Chi Guotai, Lu Dan, Sun Xiufeng. The efficiency evaluation of China commercial bank based on city difference coefficient[J]. Journal of Industrial Engineering and Engineering Management, 2007(3): 29-34, 55.]
[22] 杨兰桥, 王元亮. 中国城市群运行效率的综合评价[J]. 统计与决策, 2021, 37(1): 69-72.
  [Yang Lanqiao, Wang Yuanliang. Comprehensive evaluation of operational efficiency of Chinese urban agglomerations[J]. Statistics & Decision, 2021, 37(1): 69-72.]
[23] 魏敏, 李书昊. 新时代中国经济高质量发展水平的测度研究[J]. 数量经济技术经济研究, 2018, 35(11): 3-20.
  [Wei Min, Li Shuhao. Study on the measurement of economic high-quality development level in China in the new era[J]. Journal of Quantitative & Technological Economics, 2018, 35(11): 3-20.]
[24] 么泽恩, 蔡海生, 张学玲, 等. 基于CRITIC-TOPSIS模型的浮梁县土地生态安全时空分异及其障碍因素分析[J]. 长江流域资源与环境, 2021, 30(10): 2452-2463.
  [Yao Ze’en, Cai Haisheng, Zhang Xueling, et al. Spatio-temporal differentiation and obstacle factors of land ecological security in Fuliang County based on CRITIC-TOPSIS model[J]. Resources and Environment in the Yangtze Basin, 2021, 30(10): 2452-2463.]
[25] 马述忠, 任婉婉, 吴国杰. 一国农产品贸易网络特征及其对全球价值链分工的影响——基于社会网络分析视角[J]. 管理世界, 2016(3): 60-72.
  [Ma Shuzhong, Ren Wanwan, Wu Guojie. Characteristics of a country’s agricultural trade network and its impact on the division of labor in global value chains: Based on the social network analysis perspective[J]. Journal of Management World, 2016(3): 60-72.]
[26] 罗来军, 罗雨泽, 刘畅, 等. 基于引力模型重新推导的双边国际贸易检验[J]. 世界经济, 2014, 37(12): 67-94.
  [Luo Laijun, Luo Yuzhe, Liu Chang, et al. Test of bilateral international trade based on re-derivation of gravity modeling[J]. The Journal of World Economy, 2014, 37(12): 67-94.]
[27] 林春艳, 孔凡超. 中国产业结构高度化的空间关联效应分析——基于社会网络分析方法[J]. 经济学家, 2016(11): 45-53.
  [Lin Chunyan, Kong Fanchao. Analysis on the spatial correlation effect of industrial structure supererogation in China: Based on social network analysis[J]. Economist, 2016(11): 45-53.]
[28] 朱海燕, 童彦, 高庆彦. 我国商贸流通业碳排放的空间网络结构特征研究[J]. 商业经济研究, 2021(6): 5-9.
  [Zhu Haiyan, Tong Yan, Gao Qingyan. Research on the spatial network structure characteristics of carbon emission in China’s trade and circulation industry[J]. Journal of Commercial Economics, 2021(6): 5-9.]
[29] 邱志萍, 刘举胜, 何建佳. 我国商贸流通网络的结构特征及驱动因素——基于引力模型的社会网络分析[J]. 中国流通经济, 2023, 37(2): 31-42.
  [Qiu Zhiping, Liu Jusheng, He Jianjia. Structural characteristics and driving factors of the commercial circulation network in China: The social network analysis based on gravity model[J]. China Business and Market, 2023, 37(2): 31-42.]
[30] 王芳, 郭梦瑶, 牛方曲. “动-静”结合视角下都市圈多层次空间格局研究——以黄河“几”字弯都市圈为例[J]. 地理科学进展, 2023, 42(7): 1243-1255.
  [Wang Fang, Guo Mengyao, Niu Fangqu. Hierarchical spatial pattern of urban agglomeration based on the dynamic and static data: A case study of the Yellow River Ji-shaped bend[J]. Progress in Geography, 2023, 42(7): 1243-1255.]
[31] 杨勇, 邓祥征. 中国城市生态效率时空演变及影响因素的区域差异[J]. 地理科学, 2019, 39(7): 1111-1118.
  [Yang Yong, Deng Xiangzheng. The spatio-temporal evolutionary characteristics and regional differences in affecting factors analysis of China’s urban eco-efficiency[J]. Scientia Geographica Sinica, 2019, 39(7): 1111-1118.]
[32] 张人中, 马威, 马欣怡. 促进产业结构优化的双向投资机制设计研究[J]. 世界经济研究, 2022(6): 18-34, 135.
  [Zhang Renzhong, Ma Wei, Ma Xinyi. Design of two-way investment mechanism to promote the optimal of industrial structure[J]. World Economy Studies, 2022(6): 18-34, 135.]
[33] 滕瑜, 李天祥, 于之倩. 中国就业变化的因素与潜力分析[J]. 中国软科学, 2016(7): 33-42.
  [Teng Yu, Li Tianxiang, Yu Zhiqian. Factors and potential analysis of employment changes in China[J]. China Soft Science, 2016(7): 33-42.]
[34] 干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011, 46(5): 4-16, 31.
  [Gan Chunhui, Zheng Ruogu, Yu Dianfan. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research Journal, 2011, 46(5): 4-16, 31.]
[35] 付凌晖. 我国产业结构高级化与经济增长关系的实证研究[J]. 统计研究, 2010, 27(8): 79-81.
  [Fu Linghui. An empirical research on industry structure and economic growth[J]. Statistical Research, 2010, 27(8): 79-81.]
[36] 钟坚, 王锋波. 粤港澳大湾区产业结构优化升级的实证研究——基于准自然实验分析法[J]. 经济问题探索, 2022(11): 143-161.
  [Zhong Jian, Wang Fengbo. An empirical study on the optimization and upgrading of industrial structure in the Guangdong-Hong Kong-Macao greater bay area: Based on quasi-natural experimental analysis method[J]. Inquiry into Economic Issues, 2022(11): 143-161.]
[37] 吕明元, 尤萌萌. 韩国产业结构变迁对经济增长方式转型的影响——基于能耗碳排放的实证分析[J]. 世界经济研究, 2013(7): 73-80, 89.
  [Lü Mingyuan, You Mengmeng. The effects of industrial structure changing on transformation of the economic growth mode in South Korea: An empirical study based on the perspective of energy consumption and carbon emission[J]. World Economy Studies, 2013(7): 73-80, 89.]
[38] 代新玲, 刘伟. 产业数字化、技术创新与城市经济韧性[J]. 中国流通经济, 2022, 36(12): 81-91.
  [Dai Xinling, Liu Wei. Industrial digitalization, technological innovation and urban economic resilience[J]. China Business and Market, 2022, 36(12): 81-91.]
[39] Sunday T A, Sami U, Tevfik M K, et al. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission[J]. Science of the Total Environment, 2023, 859(P1): 160181, doi: 10.1016/j.scitotenv.2022.160181.
[40] Wu B, Yan J B, Lin H. A cost-effective algorithm for calibrating multiscale geographically weighted regression models[J]. International Journal of Geographical Information Science, 2022, 36(5): 898-917.
[41] 黄沣爵, 汤俊卿, 林华丽, 等. 基于多尺度地理加权回归模型的城市建成环境对共享单车空间分布影响研究[J]. 地理研究, 2023, 42(9): 2405-2418.
  [Huang Fengjue, Tang Junqing, Lin Huali, et al. Built environment effects on the spatio-temporal distribution of shared bikes based on multi-scale geographic weighted regression[J]. Geographical Research, 2023, 42(9): 2405-2418.]
[42] 茹少峰, 马茹慧. 黄河流域生态环境脆弱性评价、空间分析及预测[J]. 自然资源学报, 2022, 37(7): 1722-1734.
  [Ru Shaofeng, Ma Ruhui. Evaluation, spatial analysis and prediction of ecological environment vulnerability of Yellow River Basin[J]. Journal of Natural Resources, 2022, 37(7): 1722-1734.]
[43] 王海飞. 兰白都市经济圈视角下的白银市可持续发展战略[J]. 经济地理, 2011, 31(4): 566-572.
  [Wang Haifei. Research on sustainable development strategy of Baiyin City in view of Lanzhou-Baiyin metropolitan area[J]. Economic Geography, 2011, 31(4): 566-572.]
[44] 肖红军, 阳镇, 刘美玉. 企业数字化的社会责任促进效应:内外双重路径的检验[J]. 经济管理, 2021, 43(11): 52-69.
  [Xiao Hongjun, Yang Zhen, Liu Meiyu. The promotion effect of corporate digitalization on corporate social responsibility: A test of internal and external dual paths[J]. Business and Management Journal, 2021, 43(11): 52-69.]
[45] 王松茂, 宁文萍, 牛金兰, 等. 黄河流域城市生态韧性时空分异及收敛研究——基于七大城市群61个城市的实证分析[J]. 干旱区地理, 2024, 47(1): 93-103.
  [Wang Songmao, Ning Wenping, Niu Jinlan, et al. Spatiotemporal differentiation and convergence of urban ecological resilience in the Yellow River Basin: An empirical analysis based on 61 cities in seven major urban agglomerations[J]. Arid Land Geography, 2024, 47(1): 93-103.]
[46] 赵林, 高晓彤, 吴殿廷. 黄河流域绿色技术创新空间关联网络结构与影响因素[J]. 人文地理, 2023, 38(4): 102-111.
  [Zhao Lin, Gao Xiaotong, Wu Dianting. Spatial correlation network and influencing factors of green technology innovation in Yellow River Basin[J]. Human Geography, 2023, 38(4): 102-111.]
[47] 赵金丽, 张学波, 任嘉敏, 等. 多元流视角下黄河流域城市网络空间结构及其影响因素[J]. 地理科学, 2022, 42(10): 1778-1787.
  [Zhao Jinli, Zhang Xuebo, Ren Jiamin, et al. Spatial structure and influencing factors of urban network in the Yellow River Basin based on multiple flows[J]. Scientia Geographica Sinica, 2022, 42(10): 1778-1787.]
[48] 邓光耀, 周颖钦. 黄河流域雾霾污染空间关联网络结构特征及驱动因素[J]. 统计与决策, 2024, 40(3): 96-100.
  [Deng Guangyao, Zhou Yingqin. Structural characteristics and driving factors of haze pollution spatial correlation network in the Yellow River Basin[J]. Statistics & Decision, 2024, 40(3): 96-100.]
文章导航

/