收稿日期: 2024-04-16
修回日期: 2024-05-15
网络出版日期: 2025-01-02
基金资助
国家自然科学基金项目(42061066);校级大学生创新训练计划项目(XJU-SRT-23014)
TVDI-based analysis of drought and influencing factors in Turpan City in the last 20 years
Received date: 2024-04-16
Revised date: 2024-05-15
Online published: 2025-01-02
全球温室效应加剧背景下,干旱监测对保障区域的生态安全、经济发展以及农业生产具有重要的指导意义。近年来,由于吐鲁番市自身地理位置、气候变化以及水资源短缺,其干旱问题愈发显著,阻碍了其自身以及周边地区社会经济的长期、稳定发展。基于2001—2022年的MODIS归一化植被指数(NDVI)和地表温度(LST)数据建立温度植被干旱指数(TVDI)模型,利用趋势分析、M-K趋势检验、地理探测器等方法揭示了吐鲁番市近20 a的干旱时空变化及特征、干旱演变规律并探讨了不同因素(气温、降雨量、潜在蒸散发、土地覆被类型、人口密度、高程、坡度)对TVDI的影响。结果表明:(1)吐鲁番市干旱区TVDI空间分布区域特征明显,自北向南呈逐渐递增趋势,吐鲁番市总体呈现干旱化加剧,其中有89.6%的区域TVDI呈现显著增加,仅有3.5%的区域为干旱程度未有加剧。(2)TVDI年际变化表明,吐鲁番市近20 a来的干旱程度呈增加趋势,TVDI月际变化呈明显季节差异,总体表现为春季>秋季>夏季。(3)单因素监测结果表明,吐鲁番市干旱变化趋势影响比重最大因素分别为潜在蒸散发、气温和高程;多因素交互作用下,潜在蒸散发与高程、气温、降水以及土地覆被因素相互作用共同驱动干旱化的发生为当地制定干旱防治措施、提高处理生态隐患和地缘风险的能力提供理论依据。
关键词: 干旱; 温度植被干旱指数(TVDI); 趋势分析; 地理探测器; 吐鲁番市
周孝明 , 张喆 , 张越 , 王俣凝 . 基于TVDI的近20 a吐鲁番市干旱及影响因素分析[J]. 干旱区地理, 2024 , 47(12) : 2104 -2114 . DOI: 10.12118/j.issn.1000-6060.2024.234
In the context of an intensifying global greenhouse effect, accurate drought monitoring is critical for ensuring regional ecological security, economic development, and agricultural production. Turpan City, a key base for grape and cantaloupe cultivation in Xinjiang and a significant transportation hub on the Silk Road in China, holds a strategic position. In recent years, water resource scarcity due to the city’s geographic and climatic conditions has exacerbated drought issues, impeding the long-term and stable socio-economic development of Turpan City and its surrounding regions. This study establishes the temperature-vegetation drought index (TVDI) model using MODIS normalized difference vegetation index and land surface temperature data from 2001—2022. The spatial and temporal variations of drought in Turpan City over the past 20 years and its evolving patterns were analyzed using trend analysis, the Mann-Kendall trend test, and Geodetector methods. Additionally, the influence of various factors (including mean annual temperature, rainfall, potential evapotranspiration, land cover type, population density, elevation, and slope) on TVDI was investigated. The results indicate that: (1) The spatial distribution of TVDI in Turpan City exhibits distinct regional characteristics, with a gradual increase in aridity from north to south. Analysis of the trends reveals that the overall aridity of Turpan City has intensified, with 89.6% of the area showing a significant increase in TVDI, 6.9% showing a non-significant increase, and only 3.5% showing no increase in aridity. (2) The interannual trend of TVDI demonstrates a progressive increase in drought severity over the past 20 years, peaking in 2022. Notably, there are marked seasonal differences in the monthly variability of TVDI, generally following the order spring>autumn>summer. (3) Single-factor analysis highlights that potential evapotranspiration, temperature, and elevation are the top three factors influencing drought trends in Turpan City. Under multifactor interactions, potential evapotranspiration interacts with elevation, temperature, precipitation, and land cover to collectively drive aridification.
[1] | 黄曼捷, 李艳忠, 王渊刚, 等. 多源遥感降水产品在西北干旱区的气象干旱性能评估[J]. 干旱区地理, 2024, 47(4): 549-560. |
[Huang Manjie, Li Yanzhong, Wang Yuangang, et al. Evaluation of meteorological drought performance of multi-source remote-sensing precipitation products in arid northwest China[J]. Arid Land Geography, 2024, 47(4): 549-560.] | |
[2] | 许昕彤, 朱丽, 吕潇雨, 等. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384. |
[Xü Xintong, Zhu Li, Lü Xiaoyu, et al. Applicability evaluation of MSWEP product for meteorological drought monitoring in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(3): 371-384.] | |
[3] | Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. Proceedings of the Third ERTS Symposium, 1973, 3(8): 309-317. |
[4] | Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224. |
[5] | 陈少丹, 张利平, 汤柔馨, 等. 基于SPEI和TVDI的河南省干旱时空变化分析[J]. 农业工程学报, 2017, 33(24): 126-132. |
[Chen Shaodan, Zhang Liping, Tang Rouxin, et al. Analysis on temporal and spatial variation of drought in Henan Province based on SPEI and TVDI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 126-132.] | |
[6] | 王凤杰, 冯文兰, 扎西央宗, 等. 基于FY-3A/VIRR和TERRA/MODIS数据藏北干旱监测对比[J]. 自然资源学报, 2017, 32(7): 1229-1239. |
[Wang Fengjie, Feng Wenlan, Zhaxi Yangzong, et al. The comparison of FY-3A/VIRR and TERRA/MODIS data for drought monitoring[J]. Journal of Natural Resources, 2017, 32(7): 1229-1239.] | |
[7] | 杨银科, 盛强, 邵鹏鲲, 等. 基于树轮密度资料的黄河干流中部地区的PDSI序列重建[J]. 水电能源科学, 2022, 40(8): 1-4, 31. |
[Yang Yinke, Sheng Qiang, Shao Pengkun, et al. Reconstruction of PDSI sequence in central part of Yellow River based on tree rings density data[J]. Water Resources and Power, 2022, 40(8): 1-4, 31.] | |
[8] | Wang H, Zhang Y, Shao X. A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China[J]. Climatic Change, 2021, 165(1-2): 39, doi: 10.1007/s10584-021-03021-3. |
[9] | Li Y Z, Zhuang J C, Bai P, et al. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China[J]. Remote Sensing, 2022, 15(1): 86-86. |
[10] | Wang J F, Liu Z Y, Yuan Z Y, Yuan H X, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology, 2018, 563: 726-736. |
[11] | 陈世亮, 李霞, 钱钊晖, 等. 澜沧江——湄公河流域干旱趋势及其对生态系统碳固定的影响[J]. 地理学报, 2024, 79(3): 747-764. |
[Chen Shiliang, Li Xia, Qian Zhaohui, et al. Drought trend and its impact on ecosystem carbon sequestration in Lancang-Mekong River Basin[J]. Acta Geographic Sinica, 2024, 79(3): 747-764.] | |
[12] | 武彬. 基于VIIRS-TVDI的干旱区农田土壤湿度反演方法研究[D]. 泰安: 山东农业大学, 2024. |
[Wu Bin. Study on inversion of soil moisture in arid area based on VIIRS-TVDI[D]. Tai’an: Shandong Agricultural University, 2024.] | |
[13] | 于维, 柯福阳, 曹云昌. 基于MODIS-TVDI/GNSS-PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210. |
[Yu Wei, Ke Fuyang, Cao Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS-TVDI/GNSS-PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.] | |
[14] | 余灏哲, 李丽娟, 李九一. 基于TRMM降尺度和MODIS数据的综合干旱监测模型构建[J]. 自然资源学报, 2020, 35(10): 2553-2568. |
[Yu Haozhe, Li Lijuan, Li Jiuyi. Establishment of comprehensive drought monitoring model based on downscaling TRMM and MODIS data[J]. Journal of Natural Resources, 2020, 35(10): 2553-2568.] | |
[15] | Liu Q, Zhang S, Zhang H R, et al. Monitoring drought using composite drought indices based on remote sensing[J]. Science of the Total Environment, 2020, 711: 134585, doi: 10.1016/j.scitotenv.2019.134585. |
[16] | Zhang Z, Xu W, Shi Z, et al. Establishment of a comprehensive drought monitoring index based on multisource remote sensing data and agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2113-2126. |
[17] | 阿依加马力·克然木, 努尔巴衣·阿布都沙力克. 近52年新疆吐鲁番市气温及降水量变化特征分析[J]. 干旱区资源与环境, 2014, 28(12): 45-50. |
[Keranmu Ayijiamali, Abudouzhalake Nuerbayi. Analysis of temperature and rainfall changes in recent 52 years in Turpan City, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 45-50.] | |
[18] | 匡昭敏. 基于EOS/MODIS卫星数据的甘蔗干旱遥感监测模型及其应用研究[D]. 南京: 南京信息工程大学, 2007. |
[Kuang Zhaomin. Sugarcane drought monitoring models and its application with remotely sensed data from EOS/MODIS[D]. Nanjing: Nanjing University of Information Science & Technology, 2007.] | |
[19] | 刘悦. 近20年我国西部地区植被恢复时空动态及驱动力分析[D]. 咸阳: 西北农林科技大学, 2023. |
[Liu Yue. Spatio-temporal dynamics and driving forces of vegetation restoration in western China in recent 20 years[D]. Xianyang: Northwest A & F University, 2023.] | |
[20] | Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. |
[21] | 李洛晞, 沈润平, 李鑫慧, 等. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090. |
[Li Luoxi, Shen Runping, Li Xinhui, et al. Comparison of forest disturbance indices based on MODIS time-series data[J]. Remote Sensing Technology and Application, 2016, 31(6): 1083-1090.] | |
[22] | 夏照华. 基于NDVI时间序列的植被动态变化研究[D]. 北京: 北京林业大学, 2007. |
[Xia Zhaohua. The studies on dynamic of vegetation based on NDVI time series[D]. Beijing: Beijing Forestry University, 2007.] | |
[23] | 杨曦, 武建军, 闫峰, 等. 基于地表温度-植被指数特征空间的区域土壤干湿状况[J]. 生态学报, 2009, 29(3): 1205-1216. |
[Yang Xi, Wu Jianjun, Yan Feng, et al. Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space[J]. Acta Ecologica Sinica, 2009, 29(3): 1205-1216.] | |
[24] | 程小强, 周兆叶, 李旺平, 等. 基于MODIS数据的中亚地区旱情监测及影响因素分析[J]. 农业工程学报, 2022, 38(10): 128-137. |
[Cheng Xiaoqiang, Zhou Zhaoye, Li Wangping, et al. Monitoring drought situation and analyzing influencing factors in Central Asia using MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 128-137.] | |
[25] | 苟爱萍, 张振, 王江波. 基于POI视角的上海城市功能区演化特征及驱动因素[J]. 资源开发与市场, 2022, 38(9): 1052-1062. |
[Gou Aiping, Zhang zhen, Wang Jiangbo. Evolution characteristics and driving factors Shanghai urban functional area based on POI perspective[J]. Resource Development & Market, 2022, 38(9): 1052-1062.] | |
[26] | 高晓彤, 赵林, 贾建琦. 包容性绿色发展的时空演变与驱动因素——以山东省为例[J]. 开发研究, 2021(5): 24-31. |
[Gao Xiaotong, Zhao Lin, Jia Jianqi. Spatial-temporal evolution and driving factors of inclusive green development: Taking Shandong Province as an example[J]. Development Research, 2021(5): 24-31.] | |
[27] | 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719. |
[Zhang Xueyuan, Wei Wei, Zhou Liang, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of northwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4707-4719.] | |
[28] | 徐娜, 丁建丽, 刘海霞. 基于NDVI和LSMM的干旱区植被信息提取研究——以新疆吐鲁番市为例[J]. 测绘与空间地理信息, 2012, 35(7): 52-57. |
[Xu Na, Ding Jianli, Liu Haixia. Extraction of vegetation information in arid area based on NDVI and LSMM: A case study of Turpan[J]. Geomatics & Spatial Information Technology, 2012, 35(7): 52-57.] | |
[29] | 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J]. 遥感学报, 2003, 7(5): 420-427. |
[Qi Shuhua, Wang Changyao, Niu Zheng. Evaluating soil moisture status in China using the temperature vegetation dryness index (TVDI)[J]. Journal of Remote Sensing, 2003, 7(5): 420-427.] | |
[30] | 吴越. 吐鲁番盆地地表蒸散量估算与植被演化特征研究[D]. 北京: 中国地质大学(北京), 2013. |
[Wu Yue. The evapotranspiration estimation and evolution characteristics of vegetation in Turpan Basin[D]. Beijing: China University of Geosciences Beijing, 2013.] | |
[31] | 王芳, 马红, 熊友良. 吐鲁番市干旱气候特征及人工增雨工作开展[J]. 农家参谋, 2019(19): 141. |
[Wang Fang, Ma Hong, Xiong Youliang. Arid climate characteristics and artificial precipitation work in Turpan City[J]. Farm Staff, 2019(19): 141.] | |
[32] | 郭江浩, 黄佛君, 刘博, 等. 近47年吐鲁番盆地人工绿洲精明增长的时空过程分析[J]. 江西农业学报, 2024, 36(1): 76-86. |
[Guo Jianghao, Huang Fujun, Liu Bo, et al. Spatiotemporal analysis of smart growth of artificial oasis in Turpan Basin in recent 47 years[J]. Acta Agriculturae Jiangxi, 2024, 36(1): 76-86.] | |
[33] | 秦国强. 吐哈盆地地下水演变规律及趋势研究[D]. 乌鲁木齐: 新疆农业大学, 2023. |
[Qin Guoqiang. Research on evolution law and trend of groundwater in the Turpan-Hami Basin[D]. Urumqi: Xinjiang Agricultural University, 2023.] | |
[34] | 冶建明, 谢斯琦. 吐鲁番市土地利用转型及生态服务功能交叉敏感性研究[J]. 草业科学, 2024, 41(9): 2164-2180. |
[Ye Jianming, Xie Siqi. Cross-sensitivity analysis of land-use transformation and ecosystem service functions in Turpan City, China[J]. Pratacultural Science, 2024, 41(9): 2164-2180.] | |
[35] | 张新庆. 吐鲁番盆地地形与天气[J]. 新疆气象, 1998(6): 11-13. |
[Zhang Xinqing. Topography and weather in Turpan Basin[J]. Xinjiang Meteorology, 1998(6): 11-13.] | |
[36] | 曹兴, 万瑜, 胡双全, 等. 干旱条件下吐鲁番盆地相对湿润指数变化特征分析[J]. 沙漠与绿洲气象, 2013, 7(6): 42-49. |
[Cao Xing, Wan Yu, Hu Shuangquan, et al. Variation of relative moisture index in Turpan Basin under arid condition[J]. Desert and Oasis Meteorology, 2013, 7(6): 42-49.] | |
[37] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008.] | |
[38] | Yang R, Wang H, Hu J, et al. An improved temperature vegetation dryness index (iTVDI) and its applicability to drought monitoring[J]. Journal of Mountain Science, 2017, 14(11): 2284-2294. |
[39] | Ali S, Tong D, Xu Z, et al. Characterization of drought monitoring events through MODIS- and TRMM-based DSI and TVDI over South Asia during 2001—2017[J]. Environmental Science and Pollution Research, 2019, 26: 33568-33581. |
/
〈 |
|
〉 |