收稿日期: 2024-04-01
修回日期: 2024-07-20
网络出版日期: 2025-01-02
基金资助
新疆维吾尔自治区高校科研计划项目(XJEDU2022P065);新疆维吾尔自治区重点实验室招标课题(XJDX0909-2021-02);新疆维吾尔自治区自然科学基金项目(2021D01A118);国家自然科学基金项目(42161004)
Water utilization sources of Populus euphratica under different groundwater depths in the lower Tarim River
Received date: 2024-04-01
Revised date: 2024-07-20
Online published: 2025-01-02
地下水和土壤水是干旱区荒漠植被生长的决定因子,荒漠植被的水分利用是干旱区生态水文过程的重要环节。为更好地了解荒漠植被对水分的利用,采用氢氧稳定同位素技术,结合贝叶斯混合模型(MixSIAR),解析不同地下水埋深下不同林龄胡杨的吸水来源。结果表明:(1)土壤水δ18O和δD值随土壤深度的增加而减小,随离岸距离的增加而增大;中龄胡杨木质部水δ18O和δD值变化幅度最大,老龄胡杨次之,幼龄胡杨最小;地下水δ18O和δD值随离岸距离的增加而减小。(2)不同地下水埋深不同林龄胡杨的最大吸水层位均为地下水,其次为深层土壤水,靠河岸的胡杨可以直接利用河水。地下水埋深为1.98~2.10 m、1.95~2.21 m、2.49~2.61 m、3.51~3.73 m、4.66~4.73 m时,老龄胡杨对地下水的利用比例分别为18.4%、19.6%、17.8%、23.1%、21.9%,中龄胡杨为16.7%、17.6%、16.7%、21.4%、21.6%,幼龄胡杨为16.0%、16.6%、19.9%(埋深2.49~2.61 m和4.66~4.73 m样地无幼苗)。(3)地下水埋深随离岸距离的增加而增大;土壤含水量和土壤盐度随离岸距离的增加而减小,随土壤深度的增加而增大;胡杨对水源的利用比例随土壤含水量和盐度的增加而增大。探究不同地下水埋深下胡杨水分利用来源,为塔里木河下游荒漠河岸林的生态恢复提供理论支撑。
蒋晓晴 , 郝帅 , 叶茂 , 何定学 , 张子涵 , 李国华 . 塔里木河下游不同地下水埋深下胡杨水分利用来源研究[J]. 干旱区地理, 2024 , 47(12) : 2017 -2029 . DOI: 10.12118/j.issn.1000-6060.2024.210
Groundwater and soil water are critical determinants of desert vegetation growth in arid zones, and the water utilization patterns of desert vegetation are integral to the ecohydrological processes in these regions. To enhance the understanding of water utilization by desert vegetation, this study employed the hydrogen and oxygen stable isotope tracer technique, combined with MixSIAR, to investigate the water absorption sources of Populus euphratica across different forest ages and varying groundwater burial depths. The findings revealed the following: (1) Soil water δ18O and δD values decreased with increasing soil depth and increased with greater distance from the shore. Xylem water δ18O and δD values exhibited the highest variability in middle-aged trees, followed by old trees and young trees. Groundwater δ18O and δD values decreased with increasing distance from the shore. (2) The primary water source for Populus euphratica across different forest ages and groundwater burial depths was groundwater, followed by deep soil water. Populus euphratica located near the riverbank could directly utilize river water. When groundwater burial depths were 1.98-2.10 m, 1.95-2.21 m, 2.49-2.61 m, 3.51-3.73 m, and 4.66-4.73 m, the proportion of groundwater utilization was highest in old trees, accounting for 18.4%, 19.6%, 17.8%, 23.1%, and 21.9%, respectively. Middle-aged trees exhibited slightly lower utilization rates of 16.7%, 17.6%, 16.7%, 21.4%, and 21.6%, while young trees showed the lowest utilization rates of 16.0%, 16.6%, and 19.9% (no seedlings were observed in areas with groundwater burial depths of 2.49-2.61 m and 4.66-4.73 m). (3) Groundwater burial depth increased with distance from the riverbank, whereas soil water content and salinity decreased with distance from the riverbank and increased with soil depth. The proportion of water utilized by Populus euphratica increased with soil water content and salinity. Investigating the water utilization sources of Populus euphratica under varying groundwater burial depths provides theoretical support for the ecological restoration of desert riparian forests in the lower Tarim River, Xinjiang, China.
[1] | 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493. |
[Wang Yujie, Qin Dahe. Influence of climate change and human activity on water resources in arid region of northwest China: An overview[J]. Climate Change Research, 2017, 13(5): 483-493.] | |
[2] | 席本野, 邸楠, 曹治国, 等. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[Xi Benye, Di Nan, Cao Zhiguo, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 885-905.] | |
[3] | 赵玲, 张露, 赵妮, 等. 基于同位素示踪的不同生境果草复合系统水分利用策略[J]. 水土保持学报, 2022, 36(1): 86-94. |
[Zhao Ling, Zhang Lu, Zhao Ni, et al. Water utilization strategies of fruit-grass composite systems in different habitats based on isotope tracing[J]. Journal of Soil and Water Conservation, 2022, 36(1): 86-94.] | |
[4] | 余绍文, 张溪, 段丽军, 等. 氢氧稳定同位素在植物水分来源研究中的应用[J]. 安全与环境工程, 2011, 18(5): 1-6. |
[Yu Shaowen, Zhang Xi, Duan Lijun, et al. Application of stable hydrogen and oxygen isotope to the study of plant water use sources[J]. Safety and Environmental Engineering, 2011, 18(5): 1-6.] | |
[5] | Geris J, Tetzlaff D, McDonnell J J, et al. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments[J]. Science of the Total Environment, 2017, 595: 486-493. |
[6] | 杜勤勤. 基于氢氧稳定同位素的兰州市南北两山植物水分来源研究[D]. 兰州: 西北师范大学, 2020. |
[Du Qinqin. Study on water sources of plant species based on stable oxygen and hydrogen isotopes in the northern and southern mountains of the Lanzhou City[D]. Lanzhou: Northwest Normal University, 2020.] | |
[7] | Dawson T E, Ehleringer J R. Streamside trees that do not use stream water[J]. Nature, 1991, 350(6316): 335-337. |
[8] | 刘泽琛, 张明军, 张宇, 等. 基于氢氧稳定同位素示踪的侧柏与白榆水源对比[J]. 生态学杂志, 2024, 43(3): 694-700. |
[Liu Zechen, Zhang Mingjun, Zhang Yu, et al. Comparative study on water sources of Platycladus orientails and Ulmus pumila based on hydrogen and oxygen stable isotope tracing[J]. Chinese Journal of Ecology, 2024, 43(3): 694-700.] | |
[9] | 李荣磊, 黄来明, 裴艳武, 等. 毛乌素沙地圪丑沟小流域沙柳水分利用来源研究[J]. 水土保持学报, 2021, 35(2): 122-130. |
[Li Ronglei, Huang Laiming, Pei Yanwu, et al. Water use source of Salix psammophila in Gechougou small watershed of Mu Us Sandy Land[J]. Journal of Soil and Water Conservation, 2021, 35(2): 122-130.] | |
[10] | Qiu D D, Zhu G F, Bhat M A, et al. Water use strategy of Nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data[J]. Journal of Hydrology, 2023, 624: 129918, doi: 10.1016/j.jhydrol.2023.129918. |
[11] | 赵鹏, 徐先英, 姜生秀, 等. 石羊河下游不同衰退程度多枝柽柳灌丛水分利用格局研究[J]. 生态学报, 2022, 42(17): 7187-7197. |
[Zhao Peng, Xu Xianying, Jiang Shengxiu, et al. Water utilization pattern of Tamarix ramosissima Ledeb. Nebkhas with different decline degrees in the lower reaches of Shiyang River[J]. Acta Ecologica Sinica, 2022, 42(17): 7187-7197.] | |
[12] | 刘树宝. 基于稳定同位素技术的荒漠河岸林胡杨水分来源研究[D]. 乌鲁木齐: 新疆农业大学, 2014. |
[Liu Shubao. Study on water sources of Populus euphratica based on the stable isotope techniques in desert riparian forest[D]. Urumqi: Xinjiang Agricultural University, 2014.] | |
[13] | 李涛, 罗光明, 董克鹏, 等. 克里雅河尾闾河岸不同生长阶段胡杨的水分利用[J]. 生态学杂志, 2021, 40(4): 989-997. |
[Li Tao, Luo Guangming, Dong Kepeng, et al. Water use of Populus euphratica in different development stages growing near the riverbank at the tail of the Keriya River[J]. Chinese Journal of Ecology, 2021, 40(4): 989-997.] | |
[14] | 万彦博, 师庆东, 戴岳, 等. 沙漠腹地天然绿洲不同林龄胡杨水分利用来源[J]. 应用生态学报, 2022, 33(2): 353-359. |
[Wan Yanbo, Shi Qingdong, Dai Yue, et al. Water sources of Populus euphratica with different tree ages in the oasis of desert hinterland[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 353-359.] | |
[15] | 王玉阳, 陈亚鹏, 李卫红, 等. 塔里木河下游典型荒漠河岸植物水分来源[J]. 中国沙漠, 2017, 37(6): 1150-1157. |
[Wang Yuyang, Chen Yapeng, Li Weihong, et al. Water sources of typical desert riparian plants in the lower reaches of Tarim River[J]. Journal of Desert Research, 2017, 37(6): 1150-1157.] | |
[16] | Ma X F, Zhu J T, Wang Y, et al. Variations in water use strategies of sand-binding vegetation along a precipitation gradient in sandy regions, northern China[J]. Journal of Hydrology, 2021, 600: 126539, doi: 10.1016/j.jhydrol.2021.126539. |
[17] | 张久丹, 李均力, 包安明, 等. 2013—2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6): 1824-1835. |
[Zhang Jiudan, Li Junli, Bao Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020[J]. Arid Land Geography, 2022, 45(6): 1824-1835.] | |
[18] | Zhou H H, Ye Z X, Yang Y H, et al. Drought stress might induce dexual dpatial degregation in dioecious Populus euphratica: Insights from long-term water use efficiency and growth rates[J]. Biology, 2024, 13(5): 318, doi: 10.3390/biology13050318. |
[19] | 王世绩, 陈炳浩, 李护群. 胡杨林[M]. 北京: 中国环境科学出版社, 1995: 57-59. |
[Wang Shiji, Chen Binghao, Li Huqun. Populus euphratica forest[M]. Beijing: China Environmental Science Press, 1995: 57-59.] | |
[20] | 郝帅, 李发东. 艾比湖流域典型荒漠植被水分利用来源研究[J]. 地理学报, 2021, 76(7): 1649-1661. |
[Hao Shuai, Li Fadong. Water sources of the typical desert vegetation in Ebinur Lake Basin[J]. Acta Geographica Sinica, 2021, 76(7): 1649-1661.] | |
[21] | Schultz N M, Griffis T J, Lee X, et al. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J]. Rapid Communications in Mass Spectrometry, 2011, 25(21): 3360-3368. |
[22] | Stock B C, Jackson A L, Ward E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096, doi: 10.7717/peerj.5096. |
[23] | Kim S H, Lee D H, Kim M S, et al. Systematic tracing of nitrate sources in a complex river catchment: An integrated approach using stable isotopes and hydrological models[J]. Water Research, 2023, 235: 119755, doi: 10.1016/j.watres.2023.119755. |
[24] | Wang J, Lu N, Fu B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning[J]. Science of the Total Environment, 2019, 666: 685-693. |
[25] | Ehleringer J R, Dawson T E. Water uptake by plants: Perspectives from stable isotope composition[J]. Plant, Cell & Environment, 1992, 15(9): 1073-1082. |
[26] | 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究[J]. 生态学报, 2020, 40(16): 5611-5619. |
[Zeng Xiangming, Xu Xianli, Zhong Feixia, et al. Comparative study of MixSlAR and IsoSource models in the analysis of plant water sources[J]. Acta Ecologica Sinica, 2020, 40(16): 5611-5619.] | |
[27] | 陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658. |
[Chen Yongjin, Abula Aikeremu, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658.] | |
[28] | 张江, 李桂芳, 贺亚玲, 等. 基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源[J]. 生物多样性, 2018, 26(6): 564-571. |
[Zhang Jiang, Li Guifang, He Yaling, et al. Water utilization sources of Populus euphratica trees of different ages in the lower reaches of Tarim River[J]. Biodiversity Science, 2018, 26(6): 564-571.] | |
[29] | 周洪华, 陈亚宁, 李卫红, 等. 干旱区胡杨光合作用对高温和CO2浓度的响应[J]. 生态学报, 2009, 29(6): 2797-2810. |
[Zhou Honghua, Chen Yaning, Li Weihong, et al. Photosynthesis of Populus euphratica olive and its response to CO2 concentration and high temperature in arid environment[J]. Acta Ecologica Sinica, 2009, 29(6): 2797-2810.] | |
[30] | Chen Y, Li W, Zhou H, et al. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China[J]. International Journal of Biometeorology, 2017, 61: 1055-1062. |
[31] | 苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J]. 应用生态学报, 2020, 31(6): 1835-1843. |
[Su Pengyan, Zhang Mingjun, Wang Shengjie, et al. Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1835-1843.] | |
[32] | 王勇, 赵成义, 王丹丹, 等. 塔里木河流域不同林龄胡杨与柽柳的水分利用策略研究[J]. 水土保持学报, 2017, 31(6): 157-163. |
[Wang Yong, Zhao Chengyi, Wang Dandan, et al. Water use strategies of Populus euphratica and Tamarix ramosissima at different ages in Tarim River Basin[J]. Journal of Soil and Water Conservation, 2017, 31(6): 157-163.] | |
[33] | 陈亚鹏, 周洪华, 朱成刚. 塔里木河下游胡杨水分传输过程研究综述[J]. 干旱区地理, 2021, 44(3): 612-619. |
[Chen Yapeng, Zhou Honghua, Zhu Chenggang. A review of water transport processes of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 612-619.] |
/
〈 | 〉 |