气候与水文

黄土高原水分利用效率动态及其对干旱和地表温度的响应

  • 秦格霞 ,
  • 孟治元 ,
  • 李妮
展开
  • 1.陕西省地表系统与环境承载力重点实验室,陕西 西安 710127
    2.西北大学城市与环境学院地表系统与灾害研究院,陕西 西安 710127
    3.西安东方宏业科技股份有限公司,陕西 西安 710000
    4.陕西学前师范学院经济与管理学院,陕西 西安 710100
秦格霞(1995-),女,博士研究生,主要从事干旱区植被恢复、冰冻圈与全球气候变化等方面的研究. E-mail: qingexia2021@163.com
李妮(1984-),女,在读博士,副教授,主要从事生态水文与干旱区植被恢复等方面的研究. E-mail: lini_2004@163.com

收稿日期: 2023-12-19

  修回日期: 2024-01-25

  网络出版日期: 2024-12-03

基金资助

陕西省自然科学基础研究计划资助项目(2022JQ-274)

Dynamics of water use efficiency and its response to drought and land surface temperature on the Loess Plateau

  • QIN Gexia ,
  • MENG Zhiyuan ,
  • LI Ni
Expand
  • 1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, Shaanxi, China
    2. Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, Shaanxi, China
    3. Xi’an Dongfang Hongye Technology Co., Ltd., Xi’an 710000, Shaanxi, China
    4. School of Economics and Management, Shaanxi Xueqian Normal University, Xi’an 710100, Shaanxi, China

Received date: 2023-12-19

  Revised date: 2024-01-25

  Online published: 2024-12-03

摘要

黄土高原是世界上土壤侵蚀最严重和中国增绿幅度最大的地区,研究该区水分利用效率(WUE)时空演变及其与干旱和地表温度(LST)之间的关系,已成为黄土高原最大植被容纳阈值选择的重要参考。基于Theil-Sen趋势法和一阶差分相对贡献量法分析了2001—2021年黄土高原不同季节WUE时空变化规律及干旱和LST对WUE变化的贡献情况。结果表明:(1)2001—2021年黄土高原春、秋季WUE平均值小于2.0 g C·m-2·mm-1,夏季WUE平均值大于2.0 g C·m-2·mm-1。春、秋季耕地和林地区域WUE高于草地区域,夏季耕地区域WUE最低,林地区域次之,草地区域最高。(2)春、夏季WUE以稳定不变趋势为主,空间分布上均表现为“中部减少,西部和东部稳定不变”的特征,草地区域WUE下降速率>林地区域>耕地区域;秋季WUE以增加趋势为主,草地区域WUE上升速率>林地区域>耕地区域,空间分布上呈“西北增加,东南减少”的特征。(3)春、夏季LST对WUE变化为正贡献度,草地区域表现最为显著,秋季LST对草地和林地区域WUE为负贡献度,但对耕地区域WUE为正贡献度。春、秋季干旱对WUE变化为正贡献度,夏季为负贡献度。以上结果有助于认识气候变化和生态修复工程实施背景下黄土高原干旱和LST与水资源之间的关系。

本文引用格式

秦格霞 , 孟治元 , 李妮 . 黄土高原水分利用效率动态及其对干旱和地表温度的响应[J]. 干旱区地理, 2024 , 47(11) : 1887 -1898 . DOI: 10.12118/j.issn.1000-6060.2023.719

Abstract

The spatiotemporal variations of water use efficiency (WUE) and its relationship with drought and land surface temperature (LST) on the Loess Plateau are crucial for assessing the maximum vegetation carrying capacity in this region, known as the most severely eroded area globally and the largest greening area in China. This study employed Theil-Sen trend analysis and the first-order differencing relative contribution method to examine the spatiotemporal changes in WUE across different seasons on the Loess Plateau from 2001 to 2021 and to evaluate the contributions of drought and LST to these changes. The results reveal that: (1) The average WUE values in spring and autumn are below 2.0 g C·m-2·mm-1, while in summer, the average WUE exceeds 2.0 g C·m-2·mm-1. In spring and autumn, WUE is higher in cultivated land and forest areas compared to grassland areas, whereas in summer, WUE is lowest in cultivated land, followed by forest areas, and highest in grassland. (2) WUE remains stable in spring and summer, displaying a spatial distribution of “reduction in the central part, stability in the western and eastern parts.” The rate of decline in WUE is greater in grassland areas than in forest and cultivated land areas. In autumn, WUE shows an increasing trend, with a higher rate of increase observed in grassland areas than in forest and cultivated land areas, exhibiting a spatial pattern of “increase in the northwest, decrease in the southeast.” (3) In spring and summer, LST positively contributes to WUE changes, with the most significant impacts in grassland areas. In autumn, LST negatively affects WUE in grassland and forest areas but positively influences WUE in cultivated land areas. Drought positively contributes to WUE changes in spring and autumn, while it negatively affects WUE in summer. These findings enhance the understanding of the interactions between drought, LST, and water resources in the context of climate change and ecological restoration efforts on the Loess Plateau.

参考文献

[1] Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth & Planetary Sciences, 2016, 45(1): 223-243.
[2] 郜国明, 田世民, 曹永涛, 等. 黄河流域生态保护问题与对策探讨[J]. 人民黄河, 2020, 42(9): 126-130.
  [Gao Guoming, Tian Shimin, Cao Yongtao, et al. Discussion on the issues and countermeasures of ecological conservation of the Yellow River Basin[J]. Yellow River, 2020, 42(9): 126-130.]
[3] Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6: 1019-1022.
[4] Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015, 9(1): 38-41.
[5] Zheng H, Lin H, Zhu X J, et al. Divergent spatial responses of plant and ecosystem water-use efficiency to climate and vegetation gradients in the Chinese Loess Plateau[J]. Global and Planetary Change, 2019, 181: 102995, doi: 10.1016/j.gloplacha.2019.102995.
[6] 裴婷婷, 李小雁, 吴华武, 等. 黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报, 2019, 35(5): 119-125.
  [Pei Tingting, Li Xiaoyan, Wu Huawu, et al. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 119-125.]
[7] 邵薇薇, 杨大文, 孙福宝, 等. 黄土高原地区植被与水循环的关系[J]. 清华大学学报(自然科学版), 2009, 49(12): 1958-1962.
  [Shao Weiwei, Yang Dawen, Sun Fubao, et al. Relationship between vegetation cover and water balance in the Loess Plateaus[J]. Journal of Tsinghua University (Science and Technology Edition), 2009, 49(12): 1958-1962.]
[8] 刘宪锋, 胡宝怡, 任志远. 黄土高原植被生态系统水分利用效率时空变化及驱动因素[J]. 中国农业科学, 2018, 51(2): 302-314.
  [Liu Xianfeng, Hu Baoyi, Ren Zhiyuan. Spatiotemporal variation of water use efficiency and its driving forces on the Loess Plateau during 2000—2014[J]. Scientia Agricultura Sinica, 2018, 51(2): 302-314.]
[9] 张良侠, 胡中民, 樊江文, 等. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
  [Zhang Liangxia, Hu Zhongmin, Fan Jiangwen, et al. Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale[J]. Advances in Earth Science, 2014, 29(6): 691-699.]
[10] 陈凌伟. 2001—2020年黄河流域水分利用效率时空变化及其对环境因素的响应[J]. 水土保持通报, 2022, 42(5): 222-230.
  [Chen Lingwei. Spatiotemporal variation of water use efficiency and its responses to environmental factors in Yellow River Basin during 2001—2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 222-230.]
[11] Deng Y, Wang X H, Wang K, et al. Responses of vegetation greenness and carbon cycle to extreme droughts in China[J]. Agricultural and Forest Meteorology, 2021, 298-299: 108307, doi: 10.1016/j.agrformet.2020.108307.
[12] 卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777.
  [Zhou Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777.]
[13] Zheng H, Lin H, Zhou W J, et al. Revegetation has increased ecosystem water-use efficiency during 2000—2014 in the Chinese Loess Plateau: Evidence from satellite data[J]. Ecological Indicators, 2019, 102: 507-518.
[14] Jin N, Ren W, Tao B, et al. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China[J]. Science of the Total Environment, 2018, 642: 1-11.
[15] Yang Y T, Guan H D, Batelaan O, et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems[J]. Scientific reports, 2016, 6: 23284, doi: 10.1038/srep23284.
[16] Piao S L, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences, 2007, 104(39): 15242-15247.
[17] Quan Q, Zhang F Y, Tian D S, et al. Transpiration dominates ecosystem water use efficiency in response to warming in an alpine meadow[J]. Journal of Geophysical Research Biogeosciences, 2018, 123: 453-466.
[18] Jongen M, Pereira J S, Aires L M J, et al. The effects of drought and time of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland[J]. Agricultural and Forest Meteorology, 2011, 151: 595-606.
[19] Scurlock J M O, Cramer W, Olson R J, et al. Terrestrial NPP: Toward a consistent data set for global model evaluation[J]. Ecological Applications, 1999, 9(3): 913-919.
[20] Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2021, 115(8): 1781-1800.
[21] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13: 3907-3925.
[22] 张永瑞, 张岳军, 靳泽辉, 等. 基于SPEI指数的黄土高原夏季干旱时空特征分析[J]. 生态环境学报, 2019, 28(7): 1322-1331.
  [Zhang Yongrui, Zhang Yuejun, Jin Zehui, et al. The temporal and spatial characteristics of summer drought in the Loess Plateau based on SPEI[J]. Ecology and Environmental Sciences, 2019, 28(7): 1322-1331.]
[23] Sen P. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63: 1379-1389.
[24] 刘佳琪, 周璐红, 席小雅. 2000—2020年黄河流域土地生态质量及其变化趋势预测[J]. 干旱区地理, 2023, 46(10): 1654-1662.
  [Liu Jiaqi, Zhou Luhong, Xi Xiaoya. Land ecological quality and its change trend prediction in the Yellow River Basin from 2000 to 2020[J]. Arid Land Geography, 2023, 46(10): 1654-1662.]
[25] Zhang T, Huang Y. Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data[J]. International Journal of Climatology, 2013, 33(3): 699-708.
[26] Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes[J]. Global and Planetary Change, 2013, 101: 119-128.
[27] Zhang T, Peng J, Liang W, et al. Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000—2010[J]. Science of the Total Environment, 2016, 565: 105-122.
[28] Yan S, Piao S L, Huang M T, et al. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models[J]. Global Ecology and Biogeography, 2016, 25(3): 311-323.
[29] Gao Y, Zhu X J, Yu G R, et al. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation[J]. Agricultural and Forest Meteorology, 2014, 195-196: 32-37.
[30] Liu Y B, Xiao J F, Ju W M, et al. Water use efficiency of China’s terrestrial ecosystems and responses to drought[J]. Scientific Report, 2015, 5: 13799, doi: 10.1038/srep13799.
[31] Lian X, Piao S L, Chen A P, et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2021, 2: 232-250.
[32] Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329: 940-943.
[33] Hu Z, Yu G, Wang Q, et al. Ecosystem level water use efficiency: A review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498-1507.
文章导航

/