第三次新疆综合科学考察

新疆天山北坡城市群土地覆被数据产品精度评价

  • 闫兆进 ,
  • 孙雨晴 ,
  • HE Rong ,
  • 王冉 ,
  • 阮晓光 ,
  • 杨慧 ,
  • 慈慧
展开
  • 1.中国矿业大学资源与地球科学学院,江苏 徐州 221116
    2.中国矿业大学江苏省煤基温室气体减排与资源化利用重点实验室,江苏 徐州 221008
    3.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116
    4.圣克拉拉大学土木、环境与可持续工程系,美国 加州 95053
    5.浙江水利水电学院测绘与市政工程学院,浙江 杭州 310018
闫兆进(1991-),男,博士,预聘副教授,主要从事地学大数据挖掘与空间分析建模等方面的研究. E-mail: yanzhaojin@cumt.edu.cn
孙雨晴(2000-),女,硕士研究生,主要从事土地利用、遥感等方面的研究. E-mail: ts22010146p31@cumt.edu.cn

收稿日期: 2023-12-20

  修回日期: 2024-01-02

  网络出版日期: 2024-12-03

基金资助

新疆维吾尔自治区重点研发计划项目课题(2022B01012-1);科技部第三次新疆综合科学考察项目课题(2022xjkk1006);国家自然科学基金项目(42201451);中国博士后科学基金面上项目(2022M723379);中央高校基本科研业务费专项(2024ZDPYCH1003);浙江省社科联项目(2024N085)

Evaluation of land cover data product accuracy in urban agglomeration on the northern slope of Tianshan Mountains in Xinjiang

  • YAN Zhaojin ,
  • SUN Yuqing ,
  • HE Rong ,
  • WANG Ran ,
  • RUAN Xiaoguang ,
  • YANG Hui ,
  • CI Hui
Expand
  • 1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2. Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
    3. Key Laboratory of Coal Bed Gas Resources and Forming Process of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    4. Department of Civil, Environmental and Sustainable Engineering, Santa Clara University, Cingifornia 95053, USA
    5. College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, Zhejiang, China

Received date: 2023-12-20

  Revised date: 2024-01-02

  Online published: 2024-12-03

摘要

土地覆被产品为全球各种地球系统科学应用提供了重要的地表覆被信息,如CLCD30(30 m)、GlobeLand30(30 m,简称 Globe30)、GLC_FCS30(30 m)、FROM-GLC10(10 m)、Esri_Land_Cover_2020(10 m,简称 Esri10),以及ESAWorldCover2020(10 m,简称 ESA10),然而其在局地的精度和适用性如何尚不明确。基于Sentinel-2影像,通过样本精度评价和类别混淆评价对上述6套土地覆被数据产品在天山北坡城市群的精度及误差情况进行了研究和分析,并探讨了误差成因和不同数据产品的适用性。结果表明:(1)6套数据产品中,除Esri10外,其余5套数据产品的类型构成、面积占比相对一致。(2)GLC-FCS30、Globe30、CLCD30、FROM-GLC10、ESA10、Esri10的总体精度分别为0.8080、0.8147、0.7880、0.8531、0.8047、0.4725。(3)从产品适用性来看,GLC_FCS30适用于对耕地、裸地的分析,CLCD30适用于对林地、裸地的分析,FROM-GLC10适用于对草地、水体、冰/雪以及建筑的分析,ESA10适用于对耕地和草地的分析,Esri10适用于对林地、冰/雪以及建筑的分析,Globe30在各类别精度评价结果上更均衡。(4)类别混淆主要是耕地、林地以及草地之间及与其他类别的相互混淆,尤其是在土地覆被复杂的地区,如城市边缘区域。

本文引用格式

闫兆进 , 孙雨晴 , HE Rong , 王冉 , 阮晓光 , 杨慧 , 慈慧 . 新疆天山北坡城市群土地覆被数据产品精度评价[J]. 干旱区地理, 2024 , 47(11) : 1852 -1862 . DOI: 10.12118/j.issn.1000-6060.2023.721

Abstract

Land cover data products, including CLCD30 (30 m resolution), GlobeLand30 (30 m, referred to as Globe30), GLC_FCS30 (30 m), FROM-GLC10 (10 m), Esri_Land_Cover_2020 (10 m, referred to as Esri10), and ESAWorldCover2020 (10 m, referred to as ESA10), provide essential surface cover information for various earth system science applications globally. However, their accuracy and suitability for specific local areas remain uncertain. This study evaluates the accuracy and errors of these six land cover products in the northern slope of the Tianshan Mountains in Xinjiang, China, based on Sentinel-2 imagery, using sample accuracy assessment and category confusion evaluation. Furthermore, the causes of errors and the applicability of different products were analyzed. The results indicate that: (1) Among the six data product sets, except for Esri10, the composition and area percentages of land cover types are relatively consistent across the other five products. (2) The overall accuracies of these products are: GLC_FCS30 (0.8080), Globe30 (0.8147), CLCD30 (0.7880), FROM-GLC10 (0.8531), ESA10 (0.8047), and Esri10 (0.4725). (3) Regarding product applicability, GLC_FCS30 is effective for analyzing cropland and bareland; CLCD30 is optimal for forest and bareland; FROM-GLC10 excels in representing grassland, water bodies, snow/ice, and built-up areas; ESA10 is suitable for cropland and grassland; Esri10 performs well in forest, snow/ice, and built-up areas; and Globe30 maintains overall stability in accuracy across all categories. (4) Major category confusion occurs between cropland, forest, grassland, and other categories, especially in areas with complex land cover, such as urban fringes.

参考文献

[1] Wei H, Xiong L Y, Tang G A, et al. Spatial-temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains[J]. CATENA, 2021, 202: 105256, doi: 10.1016/j.catena.2021.105256.
[2] Li M J, He F N, Zhao C H, et al. Evaluation of global historical cropland datasets with regional historical evidence and remotely sensed satellite data from the Xinjiang area of China[J]. Remote Sensing, 2022, 14(17): 4226, doi: 10.3390/rs14174226.
[3] MohanRajan S N, Loganathan A, Manoharan P. Survey on land use/land cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and challenges[J]. Environmental Science and Pollution Research, 2020, 27(24): 29900-29926.
[4] 郭紫燕, 杨康, 刘畅, 等. 巴基斯坦土地覆盖数据产品季节性精度评价[J]. 遥感技术与应用, 2020, 35(3): 567-575.
  [Guo Ziyan, Yang Kang, Liu Chang, et al. Seasonal accuracy assessments of three land cover datasets in Pakistan[J]. Remote Sensing Technology and Application, 2020, 35(3): 567-575.]
[5] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
[6] Yu L, Du Z R, Dong R M, et al. FROM-GLC plus: Toward near real-time and multi-resolution land cover mapping[J]. GIScience & Remote Sensing, 2022, 59(1): 1026-1047.
[7] Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753-2776.
[8] Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: Transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6): 370-373.
[9] Karra K, Kontgis C, Statman-Weil Z, et al. Global land use/land cover with Sentinel 2 and deep learning[C]// IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 4704-4707.
[10] Daniele Z, van de Ruben K, de Wanda K, et al. ESA World Cover 10 m 2020 v100[DB/OL]. [2023-12-10]. https://doi.org/10.5281/zenodo.5571936.
[11] Stehman S V, Foody G M. Key issues in rigorous accuracy assessment of land cover products[J]. Remote Sensing of Environment, 2019, 231(10): 111199, doi: 10.1016/j.rse.2019.05.018.
[12] Gao Y, Liu L Y, Zhang X, et al. Consistency analysis and accuracy assessment of three global 30 m land cover products over the European Union using the Lucas dataset[J]. Remote Sensing, 2020, 12(21): 3479, doi: 10.3390/rs12213479.
[13] Ran Y H, Li X, Lu L. Evaluation of four remote sensing based land cover products over China[J]. International Journal of Remote Sensing, 2010, 31(2): 391-401.
[14] Li Z W, Chen X Y, Qi J, et al. Accuracy assessment of land cover products in China from 2000 to 2020[J]. Scientific Reports, 2023, 13(1): 12936, doi: 10.1038/s41598-023-39963-0.
[15] 康军梅. 多源遥感土地覆被产品一致性评价及要素提取分析应用研究[D]. 西安: 长安大学, 2020.
  [Kang Junmei. Research on consistency assessment of multi-source land cover poducts and application of element extraction analysis[D]. Xi’an: Chang’an University, 2020.]
[16] 付东光, 李登秋, 陆灯盛, 等. 基于调查数据的福建省3种30 m全球土地覆盖产品精度评价[J]. 福建师范大学学报(自然科学版), 2023, 39(2): 122-136.
  [Fu Dongguang, Li Dengqiu, Lu Dengsheng, et al. Accuracy assessment of three 30 m resolution global land cover products in Fujian Province based on survey data[J]. Journal of Fujian Normal University (Natural Science Edition), 2023, 39(2): 122-136.]
[17] 闫明, 庞勇, 何云玲, 等. 普洱多源土地覆盖产品一致性分析与精度评价[J]. 林业资源管理, 2023(1): 173-182.
  [Yan Ming, Pang Yong, He Yunling, et al. Consistency analysis and accuracy evaluation of multi-source land cover products in Pu’er[J]. Forest Resource Management, 2023(1): 173-182.]
[18] Liang L, Liu Q S, Liu G H, et al. Accuracy evaluation and consistency analysis of four global land cover products in the Arctic region[J]. Remote Sensing, 2019, 11(12): 1396, doi: 10.3390/rs11121396.
[19] 侯婉, 侯西勇. 全球海岸带多源土地利用覆盖遥感分类产品一致性分析[J]. 地球信息科学学报, 2019, 21(7): 1061-1073.
  [Hou Wan, Hou Xiyong. Consistency of the multiple remote sensing-based land use and land cover classification products in the global coastal zones[J]. Journal of Geo-information Science, 2019, 21(7): 1061-1073.]
[20] 吴宗洋, 蔡卓雅, 郭英, 等. 黄河流域多源遥感土地覆被数据精度评价与一致性分析[J]. 中国生态农业学报, 2023, 31(6): 917-927.
  [Wu Zongyang, Chai Zhuoya, Guo Ying, et al. Accuracy evaluation and consistency analysis on multi-source remote sensing land cover data in the Yellow River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 917-927.]
[21] 夏文韬, 王莺, 冯琦胜, 等. 甘南地区MODIS土地覆盖产品精度评价[J]. 草业科学, 2010, 27(9): 11-18.
  [Xia Wentao, Wang Ying, Feng Qisheng, et al. Accuracy assessment of MODIS land cover product of Gannan Prefecture[J]. Grassland Science, 2010, 27(9): 11-18.]
[22] Wang X, Wang J, Wang W, et al. Consistency and accuracy evaluation analysis of four cropland cover products: A case study of Indochina Peninsula[J]. Journal of Sensors, 2022(24): 1-25.
[23] 李美娇, 何凡能, 赵彩杉, 等. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224.
  [Li Meijiao, He Fanneng, Zhao Caishan, et al. Credibility assessment of cropland data in Xinjiang area in global historical LUCC datasets[J]. Journal of Ecology and Environment, 2022, 31(6): 1215-1224.]
[24] 陈逸聪, 邵华, 李杨. 多源土地覆被产品在长三角地区的一致性分析与精度评价[J]. 农业工程学报, 2021, 37(6): 142-150.
  [Chen Yicong, Shao Hua, Li Yang. Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta[J]. Journal of Agricultural Engineering, 2021, 37(6): 142-150.]
[25] Lu M, Wu W B, Zhang L, et al. A comparative analysis of five global cropland datasets in China[J]. Science China Earth Sciences, 2016, 59(12): 2307-2317.
[26] 黄亚博, 廖顺宝. 首套全球30 m分辨率土地覆被产品区域尺度精度评价——以河南省为例[J]. 地理研究, 2016, 35(8): 1433-1446.
  [Huang Yabo, Liao Shunbao. Regional accuracy assessments of the first global land cover dataset at 30-meter resolution: A case study of Henan Province[J]. Geography Research, 2016, 35(8): 1433-1446.]
[27] 宋宏利, 张晓楠. 国家尺度异源土地覆被遥感产品精度评价[J]. 国土资源遥感, 2018, 30(3): 26-32.
  [Song Hongli, Zhang Xiaonan. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing of Land Resources, 2018, 30(3): 26-32.]
[28] 黄亚博. 基于多源数据融合的MODIS土地覆被产品精度评价与改进方法研究[D]. 开封: 河南大学, 2017.
  [Huang Yabo. Research on MODIS land cover product accuracy evaluation and improvement method based on mult-source data fusion[D]. Kaifeng: Henan University, 2017.]
[29] 宋宏利, 张晓楠. 基于VGI的土地覆被遥感产品精度验证[J]. 河北工程大学学报(自然科学版), 2016, 33(4): 98-102.
  [Song Hongli, Zhang Xiaonan. Analysis of land cover category accuracy based on volunteered geographic information[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(4): 98-102.]
[30] 杨梅花, 程锦涛, 郭佳星, 等. 新疆城市规模分布与自然地理相关性分析[J]. 干旱区地理, 2022, 45(6): 1958-1967.
  [Yang Meihua, Cheng Jintao, Guo Jiaxing, et al. Correlation analysis between urban scale distribution and physicalgeography in Xinjiang[J]. Arid Land Geography, 2022, 45(6): 1958-1967.]
[31] Ma H L, Sun J G. The influence of LUCC on water demand in the north slope of Tianshan Mountain, IOP Conference Series: Earth and environmental science[J]. IOP Publishing, 2020, 560(1): 012079, doi: 10.1088/1755-1315/560/1/012079.
[32] 孙桂丽, 陆海燕, 郑佳翔, 等. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 2022, 39(1): 258-269.
  [Sun Guili, Lu Haiyan, Zheng Jiaxiang, et al. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 2022, 39(1): 258-269.]
文章导航

/