第三次新疆综合科学考察

2003—2022年昆仑山北坡典型湖泊水位变化及其归因

  • 刘玉婷 ,
  • 陈亚宁 ,
  • 朱成刚 ,
  • 张淑花 ,
  • 黄心垚
展开
  • 1.喀什大学生命与地理科学学院/新疆维吾尔自治区帕米尔高原生物资源与生态重点实验室,新疆 喀什 844000
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.西安科技大学测绘科学与技术学院,陕西 西安 710000
刘玉婷(1986-),女,博士,副教授,主要从事资源利用与生态安全研究. E-mail: liuyuting@ksu.edu.cn
陈亚宁(1958-),男,博士,研究员,主要从事干旱区生态水文研究. E-mail: chenyn@ms.xjb.ac.cn

收稿日期: 2024-03-18

  修回日期: 2024-05-11

  网络出版日期: 2024-12-03

基金资助

第三次新疆综合科学考察项目(2021xjkk0100);新疆自治区科技计划项目(2021D01B05)

Water level changes and attribution of typical lakes on the northern slope of Kunlun Mountains from 2003 to 2022

  • LIU Yuting ,
  • CHEN Yaning ,
  • ZHU Chenggang ,
  • ZHANG Shuhua ,
  • HUANG Xinyao
Expand
  • 1. School of Life and Geography, Kashi University/Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710000, Shaanxi, China

Received date: 2024-03-18

  Revised date: 2024-05-11

  Online published: 2024-12-03

摘要

湖泊水位变化是湖泊系统动态变化的重要指标,对湖泊生态环境和水资源管理具有重要意义。基于ICESat-1、CryoSat-2、EnviSat以及ICESat-2多源测高卫星提取2003—2022年阿克赛钦湖、阿牙克库木湖、阿其克库勒湖、鲸鱼湖、长虹湖、萨利吉勒干南库勒湖的水位、湖泊集水区气温、降水及土地利用数据,利用趋势分析、Mann-Kendall和Pearson相关性等方法,定量分析湖泊水位变化特征,探讨湖泊水位变化的影响机制。结果表明:(1)多源测高卫星水位与水位数据集进行精度检验,变化趋势一致且相关性分析均通过显著性F检验。(2)近20 a,除萨利吉勒干南库勒湖外,其余湖泊水位呈显著上升趋势,长虹湖水位上升速率最大,以0.71 m·a-1的速率变化,阿克赛钦湖水位上升速率最小,以0.29 m·a-1的速率变化。(3)湖泊集水区气候要素差异较大,气温都呈上升速率的变化而降水量变化不一,而阿其克库勒湖、阿牙克库木湖、鲸鱼湖水位与降水呈正相关,除萨利吉勒干南库勒湖,典型湖水位与气温正相关。利用多源测高卫星数据,对湖泊水位变化进行分析,旨在揭示昆仑山北坡湖泊的水文变化规律,并为湖泊生态环境管理提供科学依据。

本文引用格式

刘玉婷 , 陈亚宁 , 朱成刚 , 张淑花 , 黄心垚 . 2003—2022年昆仑山北坡典型湖泊水位变化及其归因[J]. 干旱区地理, 2024 , 47(11) : 1805 -1815 . DOI: 10.12118/j.issn.1000-6060.2024.177

Abstract

Changes in water level serve as crucial indicators of dynamic variations in lake systems, significantly impacting lake ecological environments and water resource management. This study employs data from ICESat-1, CryoSat-2, EnviSat, and ICESat-2 multi-source altimetry satellites to analyze water levels of Aksai Chin Lake, Ayagkumu Lake, Aqqikkol Lake, Jingyu Lake, Changhong Lake, and Surigh Yilganing Kol Lake on the northern slope of Kunlun Mountains. It also incorporates data on lake watershed areas, temperature, precipitation, and land use from 2003 to 2022. Quantitative analyses of lake water level changes were conducted using trend analysis, Mann-Kendall test, Pearson correlation, and other methods to explore the influencing mechanisms of these changes. The findings are as follows: (1) The accuracy of water levels derived from multiple altimetry satellites was validated against the water level dataset, showing consistent trends and passing the significance F test in all correlation analyses. (2) Over the past 20 years, water levels of the lakes, except for Surigh Yilganing Kol Lake, have shown a significant upward trend, with Changhong Lake exhibiting the highest rate of increase at 0.71 m·a-1, while Aksai Chin Lake has the lowest rate of increase at 0.29 m·a-1. (3) Climatic factors differ significantly across lake catchment areas, with temperatures showing a consistent rising trend and precipitation varying across regions. A positive correlation exists between water levels and precipitation for Aqqikkol Lake, Ayagkumu Lake, and Jingyu Lake, while water levels of typical lakes show a positive correlation with temperature, except for Surigh Yilganing Kol Lake. This study leverages data from multiple altimetry satellites to analyze lake water level changes, aiming to elucidate the hydrological variations of lakes on the northern slope of the Kunlun Mountains. The findings provide a scientific basis for the management of lake ecological environments.

参考文献

[1] 白洁, 陈曦, 李均力, 等. 1975—2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学, 2011, 23(1): 80-88.
  [Bai Jie, Chen Xi, Li Junli, et al. Changes of inland lake area in arid Central Asia during 1975—2007: A remote-sensing analysis[J]. Journal of Lake Sciences, 2011, 23(1): 80-88.]
[2] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810.
  [Yang Guishan, Ma Ronghua, Zhang Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810.]
[3] Heino J, Alahuhta J, Bini L M, et al. Lakes in the era of global change: Moving beyond single-lake thinking in maintaining biodiversity and ecosystem services[J]. Biological Reviews, 2021, 96(1): 89-106.
[4] 韩飞, 刘铁, 黄粤, 等. 高山湖泊生态系统气候响应研究进展[J]. 干旱区地理, 2023, 46(2): 233-242.
  [Han Fei, Liu Tie, Huang Yue, et al. Advance in the studies of responses of alpine lakes to climate change[J]. Arid Land Geography, 2023, 46(2): 233-242.]
[5] Yan L J, Zheng M P. Influence of climate change on saline lakes of the Tibet Plateau, 1973—2010[J]. Geomorphology, 2015, 246: 68-78.
[6] 李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229.
  [Li Junli, Chen Xi, Bao Anming. Spatial-temporal characteristics of lake level changes in Central Asia during 2003—2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229.]
[7] 郭清, 王兴泽. 超声波水位测量系统[J]. 东北水利水电, 1999(2): 39-40, 16, 49.
  [Guo Qing, Wang Xingze. Water level measure system by ultrasonic wave[J]. Water Resources & Hydropower of northeast China, 1999(2): 39-40, 16, 49.]
[8] 赵建虎, 周丰年, 张红梅. 船载GPS水位测量方法研究[J]. 测绘通报, 2001(增刊1): 1-3.
  [Zhao Jianhu, Zhou Fengnian, Zhang Hongmei. Research on method of determining tide on water with GPS[J]. Bulletin of Surveying and Mapping, 2001(Suppl. 1): 1-3.]
[9] 李振南, 雷伟伟, 王一帆, 等. 基于多源卫星测高数据的青海湖水位变化研究[J]. 测绘科学, 2023, 48(5): 140-151.
  [Li Zhennan, Lei Weiwei, Wang Yifan, et al. Water level variation of Qinghai Hu based on multi-source satellite altimetry data[J]. Science of Surveying and Mapping, 2023, 48(5): 140-151.]
[10] 刘军彦, 王世杰. 基于ICESat-2卫星测高数据的呼伦湖水位变化监测[J]. 干旱区研究, 2023, 40(9): 1438-1445.
  [Liu Junyan, Wang Shijie. Monitoring of water level change in Hulun Lake based on ICESat-2 satellite altimetry data[J]. Arid Zone Research, 2023, 40(9): 1438-1445.]
[11] 唐新明, 李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11): 13-18.
  [Tang Xinming, Li Guoyuan. Development and prospect of laser altimetry satellite[J]. Space International, 2017(11): 13-18.]
[12] Jiang L G, Nielsen K, Andersen O B. Improvements in mountain lake monitoring from satellite altimetry over the past 30 years-lessons learned from Tibetan lakes[J]. Remote Sensing of Environment, 2023, 295: 113702, doi: 10.1016/j.rse.2023.113702.
[13] Xu F L, Zhang G Q, Yi S, et al. Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data[J]. Journal of Hydrology, 2022, 604: 127251, doi: 10.1016/j.jhydrol.2021.127251.
[14] 田时岳, 王昶, 何佳洋, 等. 基于ICESat-2激光测高数据的鄱阳湖水位序列构建及水位预测[J]. 测绘科学, 2023, 48(12): 105-114.
  [Tian Shiyue, Wang Chang, He Jiayang, et al. Water level sequence construction and water level prediction of Poyang Lake based on ICESat-2 laser altimetry data[J]. Science of Surveying and Mapping, 2023, 48(12): 105-114.]
[15] 高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
  [Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
[16] 张元梅, 孙桂丽, 鲁艳, 等. 昆仑山北坡两种优势荒漠灌木的生物量预测模型[J]. 干旱区研究, 2024, 41(2): 284-292.
  [Zhang Yuanmei, Sun Guili, Lu Yan, et al. Biomass estimation models for two dominant desert shrubs on the northern slopes of Kunlun Mountain[J]. Arid Land Geography, 2024, 41(2): 284-292.]
[17] Li X D, Long D, Huang Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000—2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.
[18] 袁康, 谭德宝, 文雄飞, 等. 库赛湖水位动态监测及气候要素分析[J]. 长江科学院院报, 2022, 39(2): 153-158.
  [Yuan Kang, Tan Debao, Wen Xiong fei, et al. Dynamic monitoring of water level change in Kusai Lake and analysis of climatic driving forces[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(2): 153-158.]
[19] 彭海月. 青藏高原湖泊水位序列构建与变化分析[D]. 西宁: 青海大学, 2022.
  [Peng Haiyue. Construction and variation analysis of lake water level series in Qinghai-Tibet Plateau[D]. Xining: Qinghai University, 2022.]
[20] 陈健茹, 徐佳, 王冬梅. 基于多源卫星数据的高邮湖长时序水位变化监测[J]. 人民长江, 2024, 55(1): 120-126.
  [Chen Jianru, Xu Jia, Wang Dongmei. Long time series monitoring of water level change in Gaoyou Lake based on multi-source satellite data[J]. Yangtze River, 2024, 55(1): 120-126.]
[21] 廖静娟, 赵云, 陈嘉明. 基于多源雷达高度计数据的高亚洲湖泊水位变化数据集[J]. 中国科学数据, 2020, 5(1): 140-151.
  [Liao Jingjuan, Zhao Yun, Chen Jiaming. A dataset of lake level changes in High Mountain Asia using multi-altimeter data[J]. China Scientific Data, 2020, 5(1): 140-151.]
[22] 段伟利, 邹珊, 陈亚宁, 等. 1879—2015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
  [Duan Weili, Zou Shan, Chen Yaning, et al. Analysis of water level changes in Lake Balkhash and its main influencing factors during 1879—2015[J]. Advances in Earth Science, 2021, 36(9): 950-961.]
[23] 李想, 张雪芹, 徐晓明. 近40年来贝加尔湖区气候变化及其对湖泊水位的影响[J]. 湖泊科学, 2022, 34(1): 219-231.
  [Li Xiang, Zhang Xueqin, Xu Xiaoming. Climate change and its effects on the water level of Lake Baikal region since the 1980s[J]. Journal of Lake Sciences, 2022, 34(1): 219-231.]
[24] Cohen I, Huang Y, Chen J, et al. Pearson correlation coefficient[J]. Noise Reduction in Speech Processing, 2009: 1-4, doi:10.1007/978-3-642-00296-0_5.
[25] Zhang Q F, Chen Y N, Li Z, et al. Why are glacial lakes in the eastern Tianshan Mountains expanding at an accelerated rate?[J]. Journal of Geographical Sciences, 2023, 33(1): 121-150.
[26] 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
  [Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
[27] 姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学(地球科学), 2004, 34(6): 535-543.
  [Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent retreat of high Asian glaciers and its impact on water resources in northwest China[J]. Scientia Sinica (Terrae), 2004, 34(6): 535-543.]
[28] 李晓锋, 姚晓军, 孙美平, 等. 2000—2014年我国西北地区湖泊面积的时空变化[J]. 生态学报, 2018, 38(1): 96-104.
  [Li Xiaofeng, Yao Xiaojun, Sun Meiping, et al. Spatial-temporal variations in lakes in northwest China from 2000 to 2014[J]. Acta Ecologica Sinica, 2018, 38(1): 96-104.]
[29] 马山木, 甘甫平, 吴怀春, 等. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
  [Ma Shanmu, Gan Fuping, Wu Huaichun, et al. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3): 164-172.]
[30] 江远安, 刘精, 邵伟玲, 等. 1961—2013年新疆不同时间尺度降水量的气候特征及其历史演变规律[J]. 冰川冻土, 2014, 36(6): 1363-1375.
  [Jiang Yuanan, Liu Jing, Shao Weiling, et al. Climatic characteristics and historical evolution of precipitation in different time scales in Xinjiang from 1961 to 2013[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1363-1375.]
[31] Wang Y T, Hou S G, Huai B J, et al. Glacier anomaly over the western Kunlun Mountains, northwestern Tibetan Plateau, since the 1970s[J]. Journal of Glaciology, 2018, 64(246): 624-636.
文章导航

/