生态与环境

石羊河流域生态系统服务相互作用的时空变化及驱动机制研究

  • 胡飞鹏 ,
  • 赵军 ,
  • 孙紫云 ,
  • 刘坚 ,
  • 托瑞
展开
  • 西北师范大学地理与环境科学学院,甘肃 兰州 730070
胡飞鹏(1999-),男,硕士研究生,主要从事环境遥感和GIS应用研究. E-mail: 2022212994@nwnu.edu.cn
赵军(1963-),男,博士,教授,主要从事环境遥感和GIS应用研究. E-mail: zhaojun@nwnu.edu.cn

收稿日期: 2023-12-15

  修回日期: 2024-01-28

  网络出版日期: 2024-11-27

基金资助

国家自然科学基金项目(42161072)

Spatiotemporal changes and driving mechanism of ecosystem service interactions in the Shiyang River Basin

  • HU Feipeng ,
  • ZHAO Jun ,
  • SUN Ziyun ,
  • LIU Jian ,
  • TUO Rui
Expand
  • College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730030, Gansu, China

Received date: 2023-12-15

  Revised date: 2024-01-28

  Online published: 2024-11-27

摘要

了解生态系统服务的时空变化及其内部复杂关系对管理生态系统服务是至关重要的。以石羊河流域为研究区,评估流域2010、2015年和2020年6种生态系统服务,分析栅格和乡镇尺度上生态系统服务权衡协同及生态系统服务簇的时空变化,利用增强回归树模型探讨研究区生态系统服务簇的驱动机制。结果表明:(1)各类服务空间分异明显,产水量、碳储量、土壤保持和生境质量呈“西南高-东北低”的空间格局,粮食供应主要集中于流域中部和北部的耕地区,休闲娱乐高值区分布于流域南部及中部和北部人口密集地区;研究期间内各类服务均有不同程度提高,其中土壤保持的增幅最大,碳储量和生境质量增幅较小。(2)2个尺度上生态系统服务权衡协同作用呈相似性,但权衡协同作用强度不同,总体上表现为12对协同关系,3对权衡关系。(3)2个尺度上生态系统服务簇的空间格局相似,流域南部分布除粮食供应外其他5种服务为主的服务簇,流域中部和北部民勤绿洲地区分布与粮食供应和休闲娱乐为主的服务簇,其他地区的生态环境相对恶劣,分布其中的服务簇内各项服务供应较低;研究期间内服务簇存在明显的空间和数量转移变化。(4)多种因素在研究区生态系统服务簇的变化中起着重要作用,影响因子在不同年份的影响程度略不相同,其中土地利用类型、归一化植被指数、年降水量和海拔是生态系统服务簇变化的重要驱动因子。

本文引用格式

胡飞鹏 , 赵军 , 孙紫云 , 刘坚 , 托瑞 . 石羊河流域生态系统服务相互作用的时空变化及驱动机制研究[J]. 干旱区地理, 2024 , 47(10) : 1755 -1766 . DOI: 10.12118/j.issn.1000-6060.2023.708

Abstract

Understanding the spatiotemporal distribution and the internal complex relationships of ecosystem services is essential for their management. With the Shiyang River Basin, Gansu Province, China as the research area, six ecosystem services were evaluated in 2010, 2015, and 2020. The trade-off/synergy of ecosystem services and the spatial changes of service bundles on the grid and township scale were analyzed, and a boosted regression tree model was used to analyze the driving mechanism of ecosystem service bundles in the research area. The results showed the following: (1) The spatial differences of various services were obvious. The spatial pattern of water yield, carbon storage, soil conservation, and habitat quality was “southwest high-northeast low”. Food production was mainly distributed in the farming areas in the north-central part of the basin, and the high-value areas of recreational service were distributed in the southern areas and the central parts of the basin and in densely populated areas in the north. During the research period, all kinds of services were improved to varying degrees, with the increase in soil conservation having the largest improvement and the increase in carbon storage and habitat quality having the smallest. (2) The trade-offs and synergies of ecosystem services on two scales showed similarities, but their intensities were different. Overall, there were twelve pairs of synergy and three pairs of trade-off relationships. (3) The spatial patterns of ecosystem service bundles on two scales were similar. In addition to food production, there were five service-related service bundles in the southern part of the river basin. In the central and northern Minqin oasis areas of the basin, there were service bundles related to food production and recreational service. The ecological environment in other areas was relatively harsh. There was no outstanding service supply in the service bundles, but there were obvious changes in the number and space transfer of service bundles during the study period. (4) Many factors played an important role in the changes in ecosystem service bundles in the research area, and the impact factors were slightly different in different years. Among them, land use type, normalized difference vegetation index, annual precipitation, and altitude were the main drivers of the changes in ecosystem service bundles.

参考文献

[1] Costanza R, d’Arge R, De Groot R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260.
[2] Carpenter S R, Mooney H A, Agard J, et al. Science for managing ecosystem services: Beyond the millennium ecosystem assessment[J]. Proceedings of the National Academy of Sciences, 2009, 106(5): 1305-1312.
[3] Carpenter S R, DeFries R, Dietz T, et al. Millennium ecosystem assessment: Research needs[J]. Science, 2006, 314(5797): 257-258.
[4] 郑华, 李屹峰, 欧阳志云, 等. 生态系统服务功能管理研究进展[J]. 生态学报, 2013, 33(3): 702-710.
  [Zheng Hua, Li Yifeng, Ouyang Zhiyun, et al. Progress and perspectives of ecosystem services management[J]. Acta Ecologica Sinica, 2013, 33(3): 702-710.]
[5] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 2013, 32(8): 1379-1390.
  [Li Shuangcheng, Zhang Caiyu, Liu Jinlong, et al. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography[J]. Geographical Research, 2013, 32(8): 1379-1390.]
[6] 李冬花, 张晓瑶, 王咏, 等. 新安江流域生态系统服务演化过程及权衡协同关系[J]. 生态学报, 2021, 41(17): 6981-6993.
  [Li Donghua, Zhang Xiaoyao, Wang Yong, et al. Evolution process of ecosystem services and the trade-off synergy in Xin’an River Basin[J]. Acta Ecologica Sinica, 2021, 41(17): 6981-6993.]
[7] Wang Y, Dai E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in southwest China[J]. Journal of Cleaner Production, 2020, 264: 121573, doi: 10.1016/j.jclepro.2020.121573.
[8] Turner K G, Odgaard M V, B?cher P K, et al. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape[J]. Landscape and Urban Planning, 2014, 125: 89-104.
[9] 欧阳晓, 贺清云, 朱翔. 多情景下模拟城市群土地利用变化对生态系统服务价值的影响——以长株潭城市群为例[J]. 经济地理, 2020, 40(1): 93-102.
  [Ouyang Xiao, He Qingyun, Zhu Xiang. Simulation of impacts of urban agglomeration land use change on ecosystem services value under multi-scenarios: Case study in Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Economic Geography, 2020, 40(1): 93-102.]
[10] Bagstad K J, Johnson G W, Voigt B, et al. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services[J]. Ecosystem Services, 2013, 4: 117-125.
[11] 张春悦, 白永平, 杨雪荻, 等. 多情景模拟下宁夏平原生态系统服务簇识别研究[J]. 地理研究, 2022, 41(12): 3364-3382.
  [Zhang Chunyue, Bai Yongping, Yang Xuedi, et al. Identification of ecosystem service bundles in Ningxia Plain under multi-scenario simulation[J]. Geographical Research, 2022, 41(12): 3364-3382.]
[12] Raudsepp-Hearne C, Peterson G D, Bennett E M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes[J]. Proceedings of the National Academy of Sciences, 2010, 107(11): 5242-5247.
[13] 胡宇霞, 龚吉蕊, 朱趁趁, 等. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14.
  [Hu Yuxia, Gong Jirui, Zhu Chenchen, et al. Spatial distribution of ecosystem services in the desert steppe, Inner Mongolia based on ecosystem service bundles[J]. Acta Prataculturae Sinica, 2023, 32(4): 1-14.]
[14] Chen T, Feng Z, Zhao H, et al. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas[J]. Science of the Total Environment, 2020, 711: 134687, doi: 10.1016/j.scitotenv.2019.134687.
[15] 宋家鹏, 陈松林. 基于生态系统服务簇的福州市生态系统服务格局[J]. 应用生态学报, 2021, 32(3): 1045-1053.
  [Song Jiapeng, Chen Songlin. Ecosystem service pattern of Fuzhou City based on ecosystem service bundles[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1045-1053.]
[16] Zhang T, Zhang S, Cao Q, et al. The spatiotemporal dynamics of ecosystem services bundles and the social-economic-ecological drivers in the Yellow River Delta region[J]. Ecological Indicators, 2022, 135: 108573, doi: 10.1016/j.ecolind.2022.108573.
[17] 杨亮洁, 王晶, 魏伟, 等. 干旱内陆河流域生态安全格局的构建及优化——以石羊河流域为例[J]. 生态学报, 2020, 40(17): 5915-5927.
  [Yang Liangjie, Wang Jing, Wei Wei, et al. Ecological security pattern construction and optimization in arid inland river basin: A case study of Shiyang River Basin[J]. Acta Ecologica Sinica, 2020, 40(17): 5915-5927.]
[18] 张自正, 张蕾, 孙桂英, 等. 清江流域生态系统服务权衡时空效应及驱动因素[J]. 应用生态学报, 2023, 34(4): 1051-1062.
  [Zhang Zizheng, Zhang Lei, Sun Guiying, et al. Spatial and temporal effect and driving factors of ecosystem service trade-off in the Qingjiang River Basin[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1051-1062.]
[19] 王蓓, 赵军, 胡秀芳. 石羊河流域生态系统服务权衡与协同关系研究[J]. 生态学报, 2018, 38(21): 7582-7595.
  [Wang Bei, Zhao Jun, Hu Xiufang. Analysison trade-offs and synergistic relationships among multiple ecosystem services in the Shiyang River Basin[J]. Acta Ecologica Sinica, 2018, 38(21): 7582-7595.]
[20] 韩楚翘, 郑江华, 王哲, 等. 基于PLUS-InVEST模型吐哈盆地陆地生态系统碳储量时空变化及多情景模拟[J]. 干旱区地理, 2024, 47(2): 260-269.
  [Han Chuqiao, Zheng Jianghua, Wang Zhe, et al. Spatiotemporal variation and multiscenario simulation of carbon storage in terrestrial ecosystems in the Turpan-Hami Basin based on PLUS-InVEST model[J]. Arid Land Geography, 2024, 47(2): 260-269.]
[21] 秦伟, 朱清科, 张岩. 基于GIS和RUSLE的黄土高原小流域土壤侵蚀评估[J]. 农业工程学报, 2009, 25(8): 157-163, 5.
  [Qin Wei, Zhu Qingke, Zhang Yan. Soil erosion assessment of small watershed in Loess Plateau based on GIS and RUSLE[J]. Transactions of the CSAE, 2009, 25(8): 157-163, 5.]
[22] 胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136.
  [Hu Feng, Zhang Yan, Guo Yu, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136.]
[23] 王良杰, 马帅, 许稼昌, 等. 基于生态系统服务权衡的优先保护区选取研究——以南方丘陵山地带为例[J]. 生态学报, 2021, 41(5): 1716-1727.
  [Wang Liangjie, Ma Shuai, Xu Jiachang, et al. Selection of priority protected region based on ecosystem service trade-offs: A case study of the southern hill and mountain belt, China[J]. Act Ecologica Sinica, 2021, 41(5): 1716-1727.]
[24] Qiu J, Turner M G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 12149-12154.
[25] Kohonen T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480.
[26] Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4): 802-813.
[27] Wang S, Tan X, Fan F. Landscape ecological risk assessment and impact factor analysis of the Qinghai-Tibetan Plateau[J]. Remote Sensing, 2022, 14(19): 4726, doi: 10.3390/rs14194726.
[28] 王玉纯, 赵军, 付杰文, 等. 生态系统服务综合关系空间分异及驱动因素——以石羊河流域为例[J]. 水土保持研究, 2023, 30(2): 274-284.
  [Wang Yuchun, Zhao Jun, Fu Jiewen, et al. Recognition of ecosystem services trade-offs and synergistic comprehensive relations[J]. Research of Soiland Water Conservation, 2023, 30(2): 274-284.]
[29] 王波, 杨太保. 1980—2018年银川市生态系统服务价值评价及驱动力分析[J]. 干旱区地理, 2021, 44(2): 552-564.
  [Wang Bo, Yang Taibao. Value evaluation and driving force analysis of ecosystem value in Yinchuan City from 1980 to 2018[J]. Arid Land Geography, 2021, 44(2): 552-564.]
[30] Huang J, Zheng F, Dong X, et al. Exploring the complex trade-offs and synergies among ecosystem services in the Tibet Autonomous Region[J]. Journal of Cleaner Production, 2023, 384: 135483, doi: 10.1016/j.jclepro.2022.135483.
[31] Xia H, Yuan S, Prishchepov A V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management[J]. Resources, Conservation and Recycling, 2023, 189: 106767, doi: 10.1016/j.resconrec.2022.106767.
[32] Sun Y, Li J, Liu X, et al. Spatially explicit analysis of trade-offs and synergies among multiple ecosystem services in Shaanxi Valley Basins[J]. Forests, 2020, 11(2): 209, doi: 10.3390/f11020209.
[33] Saidi N, Spray C. Ecosystem services bundles: Challenges and opportunities for implementation and further research[J]. Environmental Research Letters, 2018, 13(11): 113001, doi: 10.1088/1748-9326/aae5e0.
[34] Mouchet M A, Paracchini M L, Schulp C J E, et al. Bundles of ecosystem (dis) services and multifunctionality across European landscapes[J]. Ecological Indicators, 2017, 73: 23-28.
[35] Liao Q, Li T, Wang Q, et al. Exploring the ecosystem services bundles and influencing drivers at different scales in southern Jiangxi, China[J]. Ecological Indicators, 2023, 148: 110089, doi: 10.1016/j.ecolind.2023.110089.
[36] 刘迪, 陈海, 荔童, 等. 黄土丘陵沟壑区村域生态系统服务簇的时空分异及其地形梯度分析[J]. 地理科学进展, 2022, 41(4): 670-681.
  [Liu Di, Chen Hai, Li Tong, et al. Spatiotemporal differentiation of village ecosystem service bundles in the loess hilly and gully region and terrain gradient analysis[J]. Progress in Geography, 2022, 41(4): 670-681.]
文章导航

/