气候与水文

昆仑山北坡“6·14”极端暴雨过程的中尺度对流系统特征分析

  • 李晓萌 ,
  • 杨莲梅 ,
  • 李建刚 ,
  • 刘晶
展开
  • 1.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
    2.新疆空中云水资源开发利用创新研究院,新疆 乌鲁木齐 830002
    3.新疆云降水物理与云水资源开发实验室,新疆 乌鲁木齐 830002
    4.西天山云降水物理野外科学观测试验基地,新疆 新源 844900
李晓萌(1995-),女,硕士研究生,研究实习员,主要从事天气气候和云降水物理研究. E-mail: lixm@idm.cn
杨莲梅(1969-),女,博士,研究员,主要从事天气气候和云降水物理研究. E-mail: yanglm@idm.cn

收稿日期: 2023-08-10

  修回日期: 2023-10-04

  网络出版日期: 2024-11-27

基金资助

新疆维吾尔自治区自然科学基金重点项目(2022D01D86);“天山英才”培养计划项目(2022TSYCLJ0003);中央级公益性科研院所基本科研业务费专项资金项目(IDM2022001);中国气象局乌鲁木齐沙漠气象研究所科技发展基金(KJFZ202301)

Mesoscale convective systems characteristic analysis of the “6·14” extreme rainstorm in northern slope of the Kunlun Mountains

  • LI Xiaomeng ,
  • YANG Lianmei ,
  • LI Jiangang ,
  • LIU Jing
Expand
  • 1. Urumqi Desert Meteorology Institute, China Meteorological Administration, Urumqi 830002, Xinjiang, China
    2. Xinjiang Innovation Institute of Cloud Water Resource Development and Utilization, Urumqi 830002, Xinjiang, China
    3. Xinjiang Cloud Precipitation Physics and Cloud Water Resources Development Laboratory, Urumqi 830002, Xinjiang, China
    4. Field Scientific Observation Base of Cloud Precipitation Physics in West Tianshan Mountains, Xinyuan 844900, Xinjiang, China

Received date: 2023-08-10

  Revised date: 2023-10-04

  Online published: 2024-11-27

摘要

在全球变暖的背景下,昆仑山北坡极端暴雨频发且影响巨大,由于对其的观测和研究相对匮乏,使得该区域暴雨监测和预报难度大。理解其发生机理和关键影响系统是提高其监测预报的有效途径,对该区域防灾减灾意义重大。利用高时空分辨率的气象观测资料、GPS/Met大气可降水量(PWV)资料、风云卫星资料(FY-2H)和ERA5再分析资料,对2021年6月14—17日昆仑山北坡一次极端暴雨过程进行大尺度环流背景场和中尺度对流系统特征分析。结果表明:(1)此次暴雨过程,暴雨站数多、累积降水量大、局地性强并且极端性强,在和田地区出现3个极端暴雨中心,分别发生了短时强降水和连续性降水。其中短时强降水过程持续时间短,最大小时雨强达29.4 mm;连续性降水持续时间达3 d,小时雨强小于5 mm。本次极端暴雨发生的有利环流背景是双体型南亚高压在对流层高层维持,中亚低涡形成发展。在高低空急流共同作用下,高层强辐散、低层辐合促进大气垂直运动发展,500 hPa偏南气流、700 hPa切变线以及850 hPa偏东气流相互配合为暴雨提供有利动力配置。(2)对流层中层以西南路径和西南+南方路径水汽输送为主,低层主要以低空偏东急流携带水汽输送为主,中低层水汽输送路径形成耦合,促进本次极端暴雨的发展加强。极端暴雨发生前持续的水汽输送和强的水汽通量辐合中心,使得暴雨区大气可降水量(PWV)在降水前出现显著增湿聚集过程,PWV达30 mm。(3)列车效应型+合并加强型中尺度对流云团不断在暴雨站点上空生成发展并移过,是触发短时强降水的直接影响系统,站点位于对流云团黑体亮温(TBB)梯度最大处。中-β和中-α尺度对流云团发展维持以及涡旋状中尺度对流云带的持续覆盖,是导致暴雨站点发生连续性降水的关键系统。

本文引用格式

李晓萌 , 杨莲梅 , 李建刚 , 刘晶 . 昆仑山北坡“6·14”极端暴雨过程的中尺度对流系统特征分析[J]. 干旱区地理, 2024 , 47(10) : 1700 -1712 . DOI: 10.12118/j.issn.1000-6060.2023.416

Abstract

In this paper, we use meteorological observations with high temporal and spatial variability [Fengyun satellite data (FY-2H), GPS/Met atmospheric precipitable water volume (PWV) data, and ERA5 reanalysis data]to characterize the large-scale circulation background field and mesoscale convective system (MCS) of an extreme rainstorm process on the northern slope of the Kunlun Mountains from June 14 to 17, 2021. The results showed the following. (1) The rainstorm process was characterized by many rainstorm stations and large cumulative precipitation, both localized and extreme. There were three extreme rainstorm centers in the Hotan Prefecture, where short-term heavy precipitation and continuous precipitation occurred, respectively. The duration of the short-term heavy precipitation process was short, with a maximum hourly rainfall of 29.4 mm. Meanwhile, the duration of continuous precipitation was 3 days, with an hourly rainfall of less than 5 mm. The upper troposphere was maintained by a two-body South Asian high pressure, and the formation and development of the Central Asian low vortex was a favorable circulation background for the occurrence of this extreme rainstorm. Under the joint action of high- and low-altitude rapids, strong dispersion in the upper level and convergence in the lower level promoted the development of vertical movement of the atmosphere. Moreover, a 500-hPa southerly flow, a 700-hPa shear line, and an 850-hPa easterly flow jointly provide a favorable power configuration for the rainstorm. (2) The water vapor transport in the middle troposphere was dominated by a southwest path and a southwest+south path, whereas that in the lower layer was dominated by a low-level easterly jet stream. The coupling of the water vapor transport paths in the middle and lower layers promoted the development and strengthening of this extreme rainstorm. The continuous moisture transport and strong water vapor flux convergence center before the occurrence of the extreme rainstorm made the atmospheric PWV in the rainstorm area show a significant humidification and gathering process before the precipitation, with the PWV reaching 30 mm. (3) Train-effect-type+merging- and intensifying-type MCSs were continuously generated over the rainstorm station and moved through, attributed to the direct influence system triggering short-term heavy precipitation, and the station was located at the maximum of the TBB gradient of the MCSs. The development and maintenance of meso-β- and meso-α-scale MCSs and the continuous coverage of vortex-like mesoscale convective cloud bands were the key systems that led to the occurrence of persistent precipitation at the storm site.

参考文献

[1] 张俊兰, 杨霞, 施俊杰. 青藏高原天气系统对昆仑山北坡一次罕见暴雨过程影响分析[J]. 高原气象, 2021, 40(5): 1002-1011.
  [Zhang Junlan, Yang Xia, Shi Junjie. Analysis of the influence of the Qinghai-Xizang Plateau weather system on a rare rainstorm process on the northern slope of Kunlun Mountain[J]. Plateau Meteorology, 2021, 40(5): 1002-1011.]
[2] 杨莲梅. 新疆极端降水的气候变化[J]. 地理学报, 2003, 58(4): 577-583.
  [Yang Lianmei. Climate change of extreme precipitation in Xinjiang[J]. Acta Geographica Sinica, 2003, 58(4): 577-583.]
[3] 戴新刚, 任宜勇, 陈洪武. 近50年新疆温度降水配置演变及其尺度特征[J]. 气象学报, 2007, 65(6): 1003-1010.
  [Dai Xingang, Ren Yiyong, Chen Hongwu. Multi-scale feature of climate and climate shift in Xinjiang over the past 50 years[J]. Acta Meteorology Science, 2007, 65(6): 1003-1010.]
[4] 谢泽明, 周玉淑, 杨莲梅. 新疆降水研究进展综述[J]. 暴雨灾害, 2018, 37(3): 204-212.
  [Xie Zeming, Zhou Yushu, Yang Lianmei. Review of study on precipitation in Xinjiang[J]. Torrential Rain and Disasters, 2018, 37(3): 204-212.]
[5] 李海花, 闵月, 李桉孛, 等. 昆仑山北麓两次极端暴雨水汽特征对比分析[J]. 干旱区地理, 2022, 45(3): 715-724.
  [Li Haihua, Min Yue, Li Anbei, et al. Comparative analysis of water vapor characteristics of two extreme rainstorms in the north slope of Kunlun Mountains[J]. Arid Land Geography, 2022, 45(3): 715-724.]
[6] 戴新刚, 李维京, 马柱国. 近十几年新疆水汽源地变化特征[J]. 自然科学进展, 2006, 16(12): 1651-1656.
  [Dai Xingang, Li Weijing, Ma Zhuguo. Characteristics of water vapor sources in Xinjiang in the last decade[J]. Progress in Natural Science, 2006, 16(12): 1651-1656.]
[7] 杨涛, 杨莲梅. 新疆强对流暴雨的气候特征和概率分布模式研究[J]. 灾害学, 2003, 18(1): 47-52.
  [Yang Tao, Yang Lianmei. A research on climatic characteristics and probability distribution model of severe convective rainstorm in Xinjiang[J]. Journal of Catastrophology, 2003, 18(1): 47-52.]
[8] 杨莲梅, 张云惠, 秦贺. 中亚低涡研究若干进展及问题[J]. 沙漠与绿洲气象, 2015, 9(5): 1-8.
  [Yang Lianmei, Zhang Yunhui, Qin He. Some advances and problems of Middle-Asia vortex[J]. Desert and Oasis Meteorology, 2015, 9(5): 1-8.]
[9] 刘洋, 李诚志, 刘志辉, 等. 基于WRF模式的新疆巴音布鲁克盆地强降雨天气数值模拟效果分析[J]. 干旱区研究, 2016, 33(1): 28-37.
  [Liu Yang, Li Chenzhi, Liu Zhihui, et al. Analysis on the numerical simulation of heavy rainfall based on WRF model in Bayanbuluk Basin[J]. Arid Zone Research, 2016, 33(1): 28-37.]
[10] 曾勇, 杨莲梅. 南疆西部一次暴雨强对流过程的中尺度特征分析[J]. 干旱气象, 2017, 35(3): 475-484.
  [Zeng Yong, Yang Lianmei. Mesoscale characteristic analysis of a severe convective weather with torrential rain in the west of southern Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(3): 475-484.]
[11] 曾勇, 杨莲梅. 南疆西部两次短时强降水天气中尺度特征对比分析[J]. 暴雨灾害, 2017, 36(5): 410-421.
  [Zeng Yong, Yang Lianmei. Comparative analysis on mesoscale characteristics of two severe short-time precipitation events in the west of southern Xinjiang[J]. Torrential Rain and Disasters, 2017, 36(5): 410-421.]
[12] 张云惠, 陈春艳, 杨莲梅, 等. 南疆西部一次罕见暴雨过程的成因分析[J]. 高原气象, 2013, 32(1): 191-200.
  [Zhang Yunhui, Chen Chunyan, Yang Lianmei, et al. Cause analysis on rare rainstrom in west of southern Xinjiang[J]. Plateau Meteorology, 2013, 32(1): 191-200.]
[13] 胡素琴, 希热娜依·铁里瓦尔地, 李娜, 等. 南疆西部干旱区两次极端暴雨过程对比分析[J]. 大气科学, 2022, 46(5): 1177-1197.
  [Hu Suqin, Tiliwaldi Xerinay, Li Na, et al. Comparative analysis of two extreme rainstorms in the arid area of western south Xinjiang[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(5): 1177-1197.]
[14] 杨涛, 杨莲梅, 张云惠, 等. 新疆短时强降水天气系统环流配置及雷达回波特征[J]. 干旱气象, 2021, 39(4): 631-640.
  [Yang Tao, Yang Lianmei, Zhang Yunhui, et al. Circulation configuration of synoptic system and radar echo characteristics of short-time heavy rainfall in Xinjiang[J]. Journal of Arid Meteorology, 2021, 39(4): 631-640.]
[15] 张俊兰, 李伟, 郑育琳. 昆仑山北坡短时强降水天气分型及雷达回波特征分析[J]. 沙漠与绿洲气象, 2022, 16(1): 1-9.
  [Zhang Junlan, Li Wei, Zheng Yulin. Weather classification and radar echo characteristics of short-term heavy precipitation in the northern Kunlun Mountains[J]. Desert and Oasis Meteorology, 2022, 16(1): 1-9.]
[16] 庄晓翠, 赵江伟, 李博渊, 等. 南疆西部暴雨过程水汽来源及输送特征[J]. 暴雨灾害, 2022, 41(5): 544-555.
  [Zhuang Xiaocui, Zhao Jiangwei, Li Boyuan, et al. Characteristics of water vapor source and transport during rainstorm in western southern Xinjiang[J]. Torrential Rain and Disasters, 2022, 41(5): 544-555.]
[17] 黄艳, 刘涛, 张云惠. 2010年盛夏南疆西部一次区域性暴雨天气特征[J]. 干旱气象, 2012, 30(4): 615-622.
  [Huang Yan, Liu Tao, Zhang Yunhui. Spatial-temporal variation of seasonal and annual temperature during 1961—2010 in Urumqi area based on DEM[J]. Journal of Arid Meteorology, 2012, 30(4): 615-622.]
[18] 李建刚, 姜彩莲, 张云惠, 等. 中亚低涡背景下一次短时强降水过程MCS成因分析[J]. 干旱区地理, 2019, 42(4): 724-734.
  [Li Jiangang, Jiang Cailian, Zhang Yunhui, et al. Causal analysis of MCS in a short time severe precipitation process under the background of Central Asia vortex[J]. Arid Land Geography, 2019, 42(4): 724-734.]
[19] 曾勇, 杨莲梅. 新疆西部一次极端暴雨事件的成因分析[J]. 高原气象, 2018, 37(5): 1220-1232.
  [Zeng Yong, Yang Lianmei. Analysis on the causes of an extreme rainfall event in the west of Xinjiang[J]. Plateau Meteorology, 2018, 37(5): 1220-1232.]
[20] 庄晓翠, 张云惠, 周雪英, 等. 新疆短时强降水天气雷达回波特征[J]. 气象, 2021, 47(11): 1402-1415.
  [Zhuang Xiaocui, Zhang Yunhui, Zhou Xueying, et al. Radar echo characteristics of short-time severe precipitation in Xinjiang[J]. Meteorological Monthly, 2021, 47(11): 1402-1415.]
[21] 张之贤, 张强, 陶际春. 边界层对青藏高原东北边坡地区一次冰雹天气影响的数值诊断分析[J]. 干旱区研究, 2015, 32(2): 321-328.
  [Zhang Zhixian, Zhang Qiang, Tao Jichun. Diagnostic analysis of the effect of planet boundary layer on a hail event in the northeastern edge of Qinghai-Tibetan Plateau[J]. Arid Zone Research, 2015, 32(2): 321-328.]
[22] 张强, 王蓉, 岳平, 等. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 2017, 75(1): 39-56.
  [Zhang Qiang, Wang Rong, Yue Ping, et al. Several scientific issues about the land-atmosphere interaction under complicated conditions[J]. Acta Meteorologica Sinica, 2017, 75(1): 39-56.]
[23] 刘维成, 张强, 刘新伟. 陆-气相互作用对大气对流活动影响研究进展和展望[J]. 高原气象, 2021, 40(6): 1278-1293.
  [Liu Weicheng, Zhang Qiang, Liu Xinwei. The impact of land-atmosphere interaction on the initiation and development of convective activities: A review[J]. Plateau Meteorology, 2021, 40(6): 1278-1293.]
[24] 刘晶, 刘兆旭, 周雅蔓, 等. 中昆仑山北坡持续性暴雨水汽输送及大气三维结构特征分析[J]. 大气科学, 2024, doi: 10.3878/j.issn.1006-9895.2212.22097.
  [Liu Jing, Liu Zhaoxu, Zhou Yaman, et al. The characterization of water vapor transport and three dimensional atmospheric structure during a persistent precipition event in northern slope of the middle Kunlun Mountains[J]. Chinese Journal of Atmospheric Sciences, 2024, doi: 10.3878/j.issn.1006-9895.2212.22097.]
[25] 肖开提·多莱特. 新疆降水量级标准的划分[J]. 沙漠与绿洲气象, 2005, 28(3): 7-8.
  [Duolaite Xiaokaiti. Formulation of precipitation intensity standard of Xinjiang[J]. Desert and Oasis Meteorology, 2005, 28(3): 7-8.]
[26] 张俊兰, 李如琦, 李娜, 等. 新疆塔里木盆地2021年“7·19”暴雨水汽特征的初步分析[J]. 大气科学, 2023, 47(2): 567-584.
  [Zhang Junlan, Li Ruqi, Li Na, et al. Preliminary analysis of the water vapor characteristics of the “July 19” heavy rain in 2021 in the Tarim Basin, Xinjiang[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(2): 567-584.]
[27] 杨莲梅, 杨涛. 阿克苏北部绿洲强对流暴雨与冰雹对比分析[J]. 干旱气象, 2004, 22(2): 11-16.
  [Yang Lianmei, Yang Tao. Comparative analysis of severe convective rainstorm and hail in north oasis of Akesu[J]. Journal of Arid Meteorology, 2004, 22(2): 11-16.]
[28] 郑永光, 朱佩君, 陈敏, 等. 1993—1996黄海及其周边地区M_αCS的普查分析[J]. 北京大学学报(自然科学版), 2004, 40(1): 66-72.
  [Zheng Yongguang, Zhu Peijun, Chen Min, et al. Meso-A-scale convective systems over Yellow Sea region during summers of 1993—1996[J]. Acta Scientiarum Naturalium Universitais Pekinensis, 2004, 40(1): 66-72.]
[29] Li J, Yang L, Liu W, et al. Spatiotemporal distribution characteristics of mesoscale convective systems producing short-duration heavy rainfall over the Tianshan Mountain area[J]. Advances in Meteorology, 2019, 2019: 9090659, doi: 10.1155/2019/9090659.
[30] 刘雯, 李建刚, 杨莲梅. 2016年夏末南疆地区中尺度对流系统(MCS)活动特征[J]. 沙漠与绿洲气象, 2017, 11(4): 9-16.
  [Liu Wen, Li Jiangang, Yang Lianmei. Characteristics of the MCS over southern Xinjiang during the late summer of 2016[J]. Desert and Oasis Meteorology, 2017, 11(4): 9-16.]
文章导航

/