第三次新疆综合科学考察

1986—2023年东昆仑库木库里盆地湖泊变化及成因分析

  • 张小龙 ,
  • 陈亚宁 ,
  • 朱成刚 ,
  • 付爱红 ,
  • 李玉朋 ,
  • 孙慧兰
展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
张小龙(1995-),男,硕士研究生,主要从事水资源调查研究. E-mail: 1542819750@scu.edu.ge
陈亚宁(1958-),男,研究员,主要从事干旱区生态水文研究. E-mail: chenyn@ms.xjb.ac.cn

收稿日期: 2024-03-18

  修回日期: 2024-05-13

  网络出版日期: 2024-11-27

基金资助

第三次新疆科学考察——昆仑山北坡水资源开发潜力及利用途径科学考察项目(2021xjkk0100);新疆维吾尔自治区面上项目(2022D01A348)

Lake change and genetic analysis in east Kunlun Kumukuli Basin from 1986 to 2023

  • ZHANG Xiaolong ,
  • CHEN Yaning ,
  • ZHU Chenggang ,
  • FU Aihong ,
  • LI Yupeng ,
  • SUN Huilan
Expand
  • 1. College of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China

Received date: 2024-03-18

  Revised date: 2024-05-13

  Online published: 2024-11-27

摘要

系统研究东昆仑-库木库里盆地湖泊面积变化及其成因分析,对认识东昆仑山区的气候变化与水循环特征,解决新疆南部水资源短缺问题具有重要现实意义。基于GEE遥感云计算平台,对东昆仑-库木库里盆地1986—2023年的遥感影像进行了水体提取,并结合气象、冰川、土地利用等数据分析了湖泊面积变化及其影响因素。结果表明:(1)在1986—2023年期间,东昆仑-库木库里的湖泊数量增加、面积增大。盆地湖泊面积由1986年的1196.47 km2增加到2023年的2190.43 km2,增幅达26.16 km2·a-1。(2)1986—2023年库木库里盆地中最大湖泊阿牙克库木湖的面积扩大最为明显,面积增加了50.17%;湖泊面积大于1 km2的湖泊数量,由1986年6个增加到2023年的9个。(3)东昆仑-库木库里盆地湖泊面积的扩大主要受气温和降水的影响,而降水是湖泊面积扩大的主要因子,贡献率占63.80%;气温则通过加速冰川消融补给湖泊,贡献率低于降水补给。

本文引用格式

张小龙 , 陈亚宁 , 朱成刚 , 付爱红 , 李玉朋 , 孙慧兰 . 1986—2023年东昆仑库木库里盆地湖泊变化及成因分析[J]. 干旱区地理, 2024 , 47(10) : 1651 -1661 . DOI: 10.12118/j.issn.1000-6060.2024.176

Abstract

Conducting a systematic study on lake area changes and their underlying causes in the east Kunlun Kumukuli Basin holds significant practical importance. This research enhances our understanding of climate change patterns and the regional water cycle in the east Kunlun Mountains, addressing critical water shortage issues in southern Xinjiang, China. Utilizing the Google Earth Engine (GEE) remote sensing cloud computing platform, this study extracted water bodies from remote sensing images of the east Kunlun Kumukuli Basin between 1986 and 2023. It analyzed lake area changes and their influencing factors, incorporating meteorological data, glacier activity, and land use patterns. The findings reveal several key trends from 1986 to 2023. (1) The number and area of lakes in the east Kunlun and Kumukuli regions increased significantly, with the total lake area expanding from 1196.47 km2 in 1986 to 2190.43 km2 in 2023, representing an average annual increase of 26.16 km2. (2) Ayakumu Lake, the largest in the region, experienced a 50.17% increase in area, while the number of lakes larger than 1 km2 grew from six in 1986 to nine in 2023. (3) The primary driver behind this lake expansion is moderate precipitation, which accounts for 63.80% of the increase. Although air temperature plays a role in glacier melt, its contribution to lake area growth is less significant than that of precipitation.

参考文献

[1] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810.
  [Yang Guishan, Ma Ronghua, Zhang Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810.]
[2] Ramillien G, Frappart F, Cazenave A, et al. Time variations of land water storage from an inversion of 2 years of GRACE geoids[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 283-301.
[3] Zhang G, Xie H, Duan S, et al. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change[J]. Journal of Applied Remote Sensing, 2011, 5(1): 520-532.
[4] 梁丁丁. 1975—2010年青藏高原湖泊面积变化及对气候变化的响应[D]. 北京: 中国地质大学, 2016.
  [Liang Dingding. Variation of lakes areas and its responses to climate change in the Tibetan Plateau from 1975 to 2010[D]. Beijing: China University of Geosciences, 2016.]
[5] Robertson D M, Ragotzkie R A. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature[J]. Aquatic Sciences, 1990, 52(4): 360-380.
[6] 周亚辉, 王建萍, 陈亮, 等. 基于RS和GIS的库木库勒盆地盐湖面积变化及气候响应[J]. 盐湖研究, 2017, 25(2): 96-104.
  [Zhou Yahui, Wang Jianping, Chen Liang, et al. Response relationship between the saline lake and climate change of Kumukule Basin based on RS and GIS[J]. Salt Lake Research, 2017, 25(2): 96-104.]
[7] 李均力, 白洁, 王亚俊, 等. 1964—2015年阿牙克库木湖时序变化的气候响应[J]. 干旱区研究, 2018, 35(1): 85-95.
  [Li Junli, Bai Jie, Wang Yajun, et al. Time series area of the Ayakkum Lake and its response to climate change[J]. Arid Zone Research, 2018, 35(1): 85-95.]
[8] 张文春, 张理想, 马金锋, 等. 近40余年阿牙克库木湖的时序变化研究[J]. 吉林建筑大学学报, 2019, 36(6): 23-36.
  [Zhang Wenchun, Zhang Lixiang, Ma Jinfeng, et al. Study on the time series of Ayakkum Lake in the past 40 years[J]. Journal of Jilin Jianzhu University, 2019, 36(6): 23-36.]
[9] 陈军, 汪永丰, 郑佳佳, 等. 中国阿牙克库木湖水量变化及其驱动机制[J]. 自然资源学报, 2019, 34(6): 1345-1356.
  [Chen Jun, Wang Yongfeng, Zheng Jiajia, et al. The changes in the water volume of Ayakekumu Lake based on satellite remote sensing data[J]. Journal of Natural Research, 2019, 34(6): 1345-1356.]
[10] 康南昌. 阿尔金断裂系与塔中构造带的形成与演化[J]. 石油地球物理勘探, 2002, 37(1): 48-52.
  [Kang Nanchang. Altun fault system and formation and evolution of Tazhong structural belt[J]. Oil Geophysical Prospecting, 2002, 37(1): 48-52.]
[11] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540: 418-422.
[12] Jia T, Zhang X, Dong R, et al. Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on google earth engine: A case study in Taihu Lake[J]. Remote Sensing, 2019, 11(19): 2269-2291.
[13] Xu H. Modification of normalized difference water index (NDWI) to enhance open remotely sensed imagery[J]. International Journal of Remote Sensing, 2007, 27: 3025-3033.
[14] 王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165.
  [Wang Dazhao, Wang Simeng, Huang Chang. Comparison of Sentinel-2 and imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.]
[15] 金岩丽, 徐茂林, 高帅, 等. 2001—2018年三江源地表水动态变化及驱动力分析[J]. 遥感技术与应用, 2021, 36(5): 1147-1154.
  [Jin Yanli, Xu Maolin, Gao Shuai, et al. Analysis on the dynamic changes and driving forces of surface water in the Three-River Headwater region from 2001 to 2018[J]. Remote Sensing Technology and Application, 2021, 36(5): 1147-1154.]
[16] 段水强. 1976—2015年柴达木盆地湖泊演变及其对气候变化和人类活动的响应[J]. 湖泊科学, 2018, 30(1): 256-265.
  [Duan Shuiqiang. Lake evolution in the Qaidam Basin during 1976—2015 and their changes in response to climate and anthropogenic factors[J]. Journal of Lake Sciences, 2018, 30(1): 256-265.]
[17] 杨雪雯, 王宁练, 梁倩, 等. 近60 a天山北坡冰川变化研究[J]. 干旱区地理, 2023, 46(7): 1074-1083.
  [Yang Xuewen, Wang Ninglian, Liang Qian, et al. Glacier changes on the north slope of Tianshan Mountains in recent 60 years[J]. Arid Land Geography, 2023, 46(7): 1074-1083.]
[18] 丁凯悦, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2022, 45(6): 1871-1880.
  [Ding Kaiyue, Liu Rui, Zhang Cuilan, et al. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas[J]. Arid Land Geography, 2022, 45(6): 1871-1880.]
[19] 王松涛, 金晓媚, 高萌萌, 等. 阿牙克库木湖动态变化及其对冰川消融的影响[J]. 人民黄河, 2016, 38(7): 64-67.
  [Wang Songtao, Jin Xiaomei, Gao Mengmeng, et al. Dynamic change of Ayakumu Lake and its response to glaciers melting[J]. Yellow River, 2016, 38(7): 64-67.]
[20] 赵雪岩. 无定河流域土地利用变化方式及对径流的影响研究[D]. 杨凌: 西北农林科技大学, 2022.
  [Zhao Xueyan. Study on land use change and impact on runoff in Wuding River Basin[D]. Yangling: Northwest A & F University, 2022.]
[21] 李育, 张占森, 周雪如. 全球变暖背景下青藏高原北缘气候干湿变化模式的转型与机制-古气候视角[J]. 中国科学: 地球科学, 2024, 54(6): 1960-1979.
  [Li Yu, Zhang Zhansen, Zhou Xueru. Transformation and mechanisms of climate wet/dry change on the northern Tibetan Plateau under global warming: A perspective from paleoclimatoligy[J]. Scientia Sinica (Terrae), 2024, 54(6): 1960-1979.]
[22] 张辉, 韩风清, 张明刚. 青藏高原北缘库木库里盆地遥感研究[J]. 青海环境, 2001, 11(4): 139-155.
  [Zhang Hui, Han Fengqing, Zhang Minggang. Remote sensing research on Kumukuli Basin northern margin of Qinghai-Tibet Plateau[J]. Journal of Qinghai Environment, 2001, 11(4): 139-155.]
[23] 靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区60 a气候与极端气候变化特征分析[J]. 大气科学学报, 2020, 43(6): 1042-1055.
  [Jin Zheng, You Qinglong, Wu Fangying, et al. Changes of climate and climate extremes in the Three-Rivers Headwaters region over the Tibetan Plateau during the past 60 years[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1042-1055.]
[24] 杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(1): 1-10.
  [Yang Yaoxian, Hu Zeyong, Lu Fuquan, et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10.]
[25] 冯川玉, 李陈彧, 周志浩, 等. 青藏高原降水变化特征及趋势分析[J]. 水文, 2022, 42(1): 75-79.
  [Feng Chuanyu, Li Chenyu, Zhou Zhihao, et al. Analysis on the characteristics and trend of precipitation over the Qinghai-Tibet Plateau[J]. Journal of China Hydrology, 2022, 42(1): 75-79.]
[26] 王伟, 马龙, 葛拥晓, 等. 1986—2019年新疆湖泊变化时空特征及趋势分析[J]. 生态学报, 2022, 42(2): 1300-1314.
  [Wang Wei, Ma Long, Ge Yongxiao, et al. Spatio-temporal variations and trend analysis of lake area in Xinjiang from 1986 to 2019[J]. Acta Ecologica Sinica, 2022, 42(2): 1300-1314.]
[27] Zhou J, Wang L, Zhong X, et al. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau[J]. Science Bulletin, 2022, 67(5): 474-478.]
[28] 边多, 杨志刚, 李林, 等. 近30年来西藏那曲地区湖泊变化对气候波动的响应[J]. 地理学报, 2006, 61(5): 510-518.
  [Bian Duo, Yang Zhigang, Li Lin, et al. The response of lake area change to climate variations in north Tibetan Plateau during last 30 years[J]. Acta Geographica Sinica, 2006, 61(5): 510-518.]
文章导航

/