第三次新疆综合科学考察

昆仑山北坡车尔臣河流域平原区地表水和地下水水化学特征

  • 吕雯改 ,
  • 江宇威 ,
  • 马兴羽 ,
  • 刘蕾 ,
  • 薛杰 ,
  • 张波 ,
  • 黄彩变
展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室/干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院新疆生态与地理研究所新疆荒漠植物根系生态与植被修复重点试验室,新疆 乌鲁木齐 830011
    3.新疆策勒荒漠草地生态系统国家野外科学观测研究站,新疆 策勒 848300
    4.新疆维吾尔自治区地质勘查管理中心,新疆 乌鲁木齐 830002
    5.新疆农业大学水利与土木工程学院,新疆 乌鲁木齐 830052
    6.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
吕雯改(1996-),女,硕士,主要从事水文与水资源研究. E-mail: lvwengai20@mails.ucas.ac.cn
黄彩变(1982-),女,副研究员,主要从事荒漠生态学研究. E-mail: huangcaibian@ms.xjb.ac.cn

收稿日期: 2024-03-12

  修回日期: 2024-05-20

  网络出版日期: 2024-11-27

基金资助

第三次新疆综合科学考察项目(2021xjkk0102)

Chemical characteristics of surface water and groundwater in plain area of the Qargan River Basin on the north slope of Kunlun Mountains

  • LYU Wengai ,
  • JIANG Yuwei ,
  • MA Xingyu ,
  • LIU Lei ,
  • XUE Jie ,
  • ZHANG Bo ,
  • HUANG Caibian
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Cele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Qira 848300, Xinjiang, China
    4. Xinjiang Geological Exploration Management Center, Urumqi 830002, Xinjiang, China
    5. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    6. School of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China

Received date: 2024-03-12

  Revised date: 2024-05-20

  Online published: 2024-11-27

摘要

车尔臣河流域农业用水比例过高,水资源供需矛盾突出,明确其农田灌溉用水与地下水化学特征对流域水资源配置和绿洲水生态安全具有重要意义。采用野外调查、数理统计与水化学分析法,对车尔臣河流域平原区地下水、渠水和河水的水化学及稳定氢氧同位素特征进行分析,并探讨了农田灌溉水与地下水间的相互作用关系。结果表明:(1)河水、渠水与地下水均呈弱碱性,且存在F-含量超标现象,主要水化学类型均为SO4·Cl-Na型,优势阴阳离子均为SO42-和Na+。渠水和地下水均有咸化趋势,河水的水质总体相对较好。(2)地下水、河水和渠水的水化学特征相近,其离子来源均受到岩石风化作用控制,地下水的离子来源同时还受到蒸发浓缩作用影响。(3)河水、渠水和地下水的水线斜率分别为3.70、0.61和1.42,均低于当地大气降水线斜率(5.62),且各水体样点集中分布于大气降水线下方,说明河水和渠水均与地下水的水力联系十分密切,二者均是浅层地下水的重要补给来源,补给比例分别为56.48%和43.52%。研究结果可为车尔臣河流域平原灌区水资源的高效利用及合理配置提供科学依据。

本文引用格式

吕雯改 , 江宇威 , 马兴羽 , 刘蕾 , 薛杰 , 张波 , 黄彩变 . 昆仑山北坡车尔臣河流域平原区地表水和地下水水化学特征[J]. 干旱区地理, 2024 , 47(10) : 1617 -1627 . DOI: 10.12118/j.issn.1000-6060.2024.162

Abstract

Agricultural water constitutes a significant proportion of total water consumption in the Qargan River Basin. The imbalance between water supply and demand in this region has become increasingly prominent. Understanding the hydrochemical characteristics of irrigation water and groundwater in the Qargan River Basin is crucial for effective water resource allocation and ecological security within the oasis. This study examines the hydrochemical parameters, as well as the stable isotopic compositions of hydrogen and oxygen, in river water, channel water, and groundwater from the plain areas of the basin. Data were collected through field investigations, mathematical statistical analyses, and hydrochemical methods to explore the interaction between irrigation water and groundwater. The key findings are as follows: (1) River water, channel water, and groundwater are all weakly alkaline, with elevated fluoride content in each. The predominant hydrochemical type for all water bodies is SO4·Cl-Na, with SO42- and Na+ as the dominant anion and cation, respectively. Groundwater and channel water show trends of salinization, whereas the river water quality is comparatively better. (2) The three water bodies exhibit similar hydrochemical characteristics. Ion sources in river water and channel water are primarily controlled by rock weathering, while groundwater is influenced by both rock weathering and evaporative concentration. (3) The slopes of the river water, channel water, and groundwater lines are 3.70, 0.61, and 1.42, respectively, which are lower than the slope (5.62) of the local meteoric water line (LMWL). Additionally, nearly all sampling sites for the three water bodies are distributed below the LMWL in a relatively compact manner. This suggests that river and channel waters are closely hydrologically connected to groundwater and act as the primary recharge sources, contributing 56.48% and 43.52%, respectively, to groundwater replenishment.

参考文献

[1] 周洪华, 杨玉海, 朱成刚, 等. 供需平衡视角下昆仑山北坡县域单元地表水资源开发利用潜力初探[J]. 干旱区地理, 2024, 47(7): 1106-1115.
  [Zhou Honghua, Yang Yuhai, Zhu Chenggang, et al. Development and utilization potential of surface water resources of the counties on the northern slope of Kunlun Mountains from the perspective of supply and demand balance[J]. Arid Land Geography, 2024, 47(7): 1106-1115.]
[2] 陈亚宁, 朱成刚, 李稚, 等. 昆仑山北坡区域高质量发展面临的问题、机遇与挑战[J]. 干旱区地理, 2024, 47(5): 733-740.
  [Chen Yaning, Zhu Chenggang, Li Zhi, et al. High-quality development in the northern slope of the Kunlun Mountains: Issues, opportunities and challenges[J]. Arid Land Geography, 2024, 47(5): 733-740.]
[3] May C, Lucke A, Stichler W, et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes(δ18O、δ2H)[J]. Journal of Hydrology, 2007, 334(1-2): 53-63.
[4] 王旭东, 李升, 郭新, 等. 基于同位素技术的且末车尔臣河流域地下水补给来源分析[J]. 中国农村水利水电, 2020(2): 23-28, 33.
  [Wang Xudong, Li Sheng, Guo Xin, et al. An analysis of the groundwater recharge source of Cherchen River Basin in Qianma County[J]. China Rural Water and Hydropower, 2020(2): 23-28, 33.]
[5] Wang W R, Chen Y N, Chen Y P, et al. Groundwater dynamic influenced by intense anthropogenic activities in a dried-up river oasis of Central Asia[J]. Hydrology Research, 2022, 53(4): 532-546.
[6] Zheng L L, Jiang C L, Chen X, et al. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin[J]. Journal of Environmental Management, 2022, 312: 114933, doi: 10.1016/j.jenvman.2022.114933.
[7] 吉卫波, 赵银鑫, 虎博文, 等. 宁夏苦水河流域地表水与地下水转化关系研究[J]. 干旱区地理, 2023, 46(10): 1612-1621.
  [Ji Weibo, Zhao Yinxin, Hu Bowen, et al. Transformation relationship between surface water and groundwater in Kushui River Basin of Ningxia[J]. Arid Land Geography, 2023, 46(10): 1612-1621.]
[8] 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学, 2022, 43(4): 1873-1884.
  [Lei Mi, Zhou Jinlong, Zhang Jie, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022, 43(4): 1873-1884.]
[9] Wang W H, Wang W R, Chen, Y N, et al. Water quality and interaction between groundwater and surface water impacted by agricultural activities in an oasis-desert region[J]. Journal of Hydrology, 2023, 617: 128937, doi: 10.1016/j.jhydrol.2022.128937.
[10] 李升, 余斌, 陈锋, 等. 皮山河绿洲带地下水水化学及同位素特征分析[J]. 干旱区资源与环境, 2021, 35(5): 116-122.
  [Li Sheng, Yu Bin, Chen Feng, et al. Analysis of hydrochemical and isotopic characteristics in Pishan River oasis zone[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 116-122.]
[11] 宋晨, 马斌, 梁杏, 等. 玛纳斯河流域山前平原地下水水化学特征与补给来源[J]. 干旱区资源与环境, 2021, 35(1): 160-168.
  [Song Chen, Ma Bin, Liang Xing, et al. Hydrochemical characteristics and recharge of groundwater in piedmont plain in the Manas River Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 160-168.]
[12] 王志丹. 车尔臣河地表水径流变化与水化学变化分析[J]. 地下水, 2016, 38(5): 122-136.
  [Wang Zhidan. Analysis of surface water runoff change and hydrochemistry change in Cherchen River[J]. Ground Water, 2016, 38(5): 122-136.]
[13] 李军, 欧阳宏涛, 周金龙. 新疆车尔臣河流域绿洲带地下水咸化与污染主控因素[J]. 环境科学, 2024, 45(1): 207-217.
  [Li Jun, Ouyang Hongtao, Zhou Jinlong. Controlling factors of groundwater salinization and pollution in the oasis zone of the Cherchen River Basin of Xinjiang[J]. Environmental Science, 2024, 45(1): 207-217.]
[14] 王凯. 新疆库尔勒地区地下水形成及赋存条件分析[J]. 地下水, 2016, 38(6): 253-254.
  [Wang Kai. Analysis of groundwater formation and occurrence conditions in Korla area, Xinjiang[J]. Ground Water, 2016, 38(6): 253-254.]
[15] 樊自立, 徐海量, 张鹏, 等. 新疆车尔臣河及其水资源利用研究[J]. 干旱区研究, 2014, 31(1): 20-26.
  [Fan Zili, Xu Hailiang, Zhang Peng, et al. The Qarqan River in Xinjiang and its water resources utilization[J]. Arid Zone Research, 2014, 31(1): 20-26.]
[16] Piper A M. A graphic procedure in the geochemical interpretationof water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928.
[17] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[18] 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
  [Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
[19] 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
  [Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.]
[20] 李红阳, 陈天宇, 王圣杰, 等. 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024, 47(9): 1443-1450.
  [Li Hongyang, Chen Tianyu, Wang Shengjie, et al. Spatial and temporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021[J]. Arid Land Geography, 2024, 47(9): 1443-1450.]
[21] Wang W R, Chen Y N, Wang W H, et al. Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia[J]. Journal of Arid Land, 2021, 13(10): 977-994.
[22] Wang W R, Chen Y N, Wang W H, et al. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin[J]. Journal of Hydrology, 2021, 594: 125644, doi: 10.1016/j.jhydrol.2020.125644.
[23] Lacson C F Z, Lu M C, Huang Y H. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management: An overview[J]. Journal of Cleaner Production, 2021, 280: 124236, doi: 10.1016/j.jclepro.2020.124236.
[24] 张勇军, 杨余辉, 胡义成, 等. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594.
  [Zhang Yongjun, Yang Yuhui, Hu Yicheng, et al. Temporal and spatial variation characteristics of hydrochemistry and irrigation adaptability evaluation in Kashi River Basin, Xinjiang[J]. Arid Land Geography, 2023, 46(4): 583-594.]
[25] 李小等, 常亮, 段瑞, 等. 和田河中下游流域地下水水化学特征及其演化规律[J]. 干旱区地理, 2024, 47(5): 753-761.
  [Li Xiaodeng, Chang Liang, Duan Rui, et al. Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin[J]. Arid Land Geography, 2024, 47(5): 753-761.]
[26] 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389.
  [Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristicsand formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389.]
[27] 朱成刚, 陈亚宁, 张明军, 等. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105.
  [Zhu Chenggang, Chen Yaning, Zhang Mingjun, et al. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains[J]. Arid Land Geography, 2024, 47(7): 1097-1105.]
[28] 石玉东, 王圣杰, 张明军, 等. 昆仑山北坡地表水氢氧稳定同位素空间分布特征[J]. 干旱区地理, 2024, 47(7): 1127-1135.
  [Shi Yudong, Wang Shengjie, Zhang Mingjun, et al. Spatial distribution characteristics of stable hydrogen and oxygen isotopes in surface waters on the north slope of the Kunlun Mountains[J]. Arid Land Geography, 2024, 47(7): 1127-1135.]
[29] Sun C J, Li X G, Chen Y N, et al. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin[J]. Isotopes in Environmental and Health Studies, 2016, 52(3): 281-297.
[30] Cheng L P, Si B C, Wang Y P, et al. Groundwater recharge mechanisms on the Loess Plateau of China: New evidence for the significance of village ponds[J]. Agricultural Water Management, 2021, 257: 107148, doi: 10.1016/j.agwat.2021.107148.
[31] Zhang J, Zhou J L, Chen Y F, et al. Identifying the factors controlling surface water and groundwater chemical characteristics and irrigation suitability in the Yarkant River Basin, northwest China[J]. Environmental Research, 2023, 223: 115452, doi: 10.1016/j.envres.2023.115452.
[32] Louw P G B D, Essink G H P O, Stuyfzand P J, et al. Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, the Netherlands[J]. Journal of Hydrology, 2010, 394(3/4): 494-506.
文章导航

/