生物与土壤

大型灌区土壤水盐运移模拟研究进展

  • 蒙慧敏 ,
  • 占车生 ,
  • 胡实 ,
  • 林忠辉
展开
  • 1.中国科学院地理科学与资源研究所陆地水循环及地表过程院重点实验室/生态系统网络观测与模拟重点实验室,北京 100101
    2.中国科学院大学,北京 100049
蒙慧敏(1997-),女,博士研究生,主要从事水盐运移模拟研究. E-mail: mhm2019@163.com
占车生(1975-),男,博士,研究员,主要从事水文水资源研究. E-mail: zhancs@igsnrr.ac.cn

收稿日期: 2023-12-19

  修回日期: 2024-01-26

  网络出版日期: 2024-09-24

基金资助

国家自然科学基金项目(U22A20555);国家自然科学基金项目(42371034)

Research progress on simulation of soil water-salt transport in large-scale irrigation districts

  • MENG Huimin ,
  • ZHAN Chesheng ,
  • HU Shi ,
  • LIN Zhonghui
Expand
  • 1. Key Laboratory of Water Cycle and Related Land Surface Processes/Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-12-19

  Revised date: 2024-01-26

  Online published: 2024-09-24

摘要

土壤盐渍化是一种由自然和人类活动综合作用引起的土地退化现象,灌区人类活动频繁,影响土壤盐渍化的因素多样,深入理解土壤水盐运移过程将有助于灌区的土壤盐渍化防治。在对灌区土壤水盐运移的影响因素、国内外水盐模型特点和应用研究梳理的基础上,提出了灌区水盐运移模拟的可能发展方向。灌区盐渍化的形成与气候干旱、地形、土壤季节性冻融、地下水含盐量和成土母质等自然因素,以及不合理的灌溉管理措施、耕作方式和施肥制度等人为因素密切相关。水盐运移模型是研究土壤水盐运移过程的有效工具,目前常用的水盐运移模型包括水盐平衡模型、物理模型和统计模型。由于模型率定和验证所需的土壤水盐运移过程、作物生长过程观测资料较难获取,水盐运移模型多用于田间尺度的节水控盐策略和灌排管理措施优化研究,在区域应用较为有限。现代大型灌区的快速发展导致灌区土壤水盐运移时空分布规律变化较大,对模型的不断改进以及计算机技术的快速发展为探究大型灌区水盐运移时空演变机制提供了可能性。未来应加强基于生态安全的灌区土壤水盐运移机制研究,构建耦合气候模式或经济模型的多过程水盐运移模型。

本文引用格式

蒙慧敏 , 占车生 , 胡实 , 林忠辉 . 大型灌区土壤水盐运移模拟研究进展[J]. 干旱区地理, 2024 , 47(9) : 1566 -1576 . DOI: 10.12118/j.issn.1000-6060.2023.717

Abstract

Soil salinization is a manifestation of land degradation caused by the combined effect of natural processes and human activities. This issue is particularly common in irrigation districts, where various factors exacerbated by frequent human interventions influence soil salinity. To prevent soil salinization, it is essential to have a comprehensive understanding of soil water-salt transport mechanisms in irrigation districts with frequent human activities. After reviewing the factors that influence soil water-salt transport in irrigation districts and the characteristics and applications of water-salt transport model, we propose a potential direction for simulating water-salt transport in irrigation areas. The formation of salinization in irrigation areas is closely related to natural factors such as climatic aridity, terrain, seasonal soil freeze-thaw cycles, groundwater salinity, and parent material of soils, as well as anthropogenic factors such as irrational irrigation practices, agricultural methodologies, and fertilization regimes. To understand the process of water-salt transport, soil water-salt transport models are effective tools. The commonly used models for water-salt transport include water-salt balance models, physical models, and statistical models. They are mainly used to optimize irrigation water-saving regimes and drainage management for salinity control at the field scale. However, applying these models at the regional scale presents challenges due to the difficulty of obtaining observational data to calibrate and validate models that involve soil water-salt transport processes and crop growth. The rapid development of modern large-scale irrigation districts has changed the spatiotemporal distribution of soil water-salt transport. However, the continuous improvements of the model and the rapid development of computer technology have provided possibilities for investigating the spatiotemporal evolution mechanisms of water-salt transport in large-scale irrigation districts. Future models should focus on strengthening the soil water-salt transport mechanisms based on ecological safety. It is recommended to develop a multi-process water-salt transport model that is coupled with a climate model or an economic model.

参考文献

[1] 康绍忠, 霍再林, 李万红. 旱区农业高效用水及生态环境效应研究现状与展望[J]. 中国科学基金, 2016, 30(3): 208-212.
  [Kang Shaozhong, Huo Zailin, Li Wanhong. High-efficient water use and eco-environmental impacts in agriculture in arid regions: Advance and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 208-212.]
[2] 汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔”变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019, 34(11): 1306-1312.
  [Tang Qiuhong, Liu Xingcai, Zhou Yuanyuan, et al. Cascading impacts of Asian water tower change on downstream water system[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1306-1312.]
[3] Qadir M, Quillérou E, Nangia V, et al. Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014, 38(4): 282-295.
[4] Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123-131.
[5] Weng Y L, Gong P, Zhu Z L. A spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 Hyperion data[J]. Pedosphere, 2010, 20(3): 378-388.
[6] 杜学军, 闫彬伟, 许可, 等. 盐碱地水盐运移理论及模型研究进展[J]. 土壤通报, 2021, 52(3): 713-721.
  [Du Xuejun, Yan Binwei, Xu Ke, et al. Research progress on water-salt transport theories and models in saline-alkali soil[J]. Chinese Journal of Soil Science, 2021, 52(3): 713-721.]
[7] Zhang H M, Xiong Y W, Huang G H, et al. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District[J]. Agricultural Water Management, 2017, 179: 205-214.
[8] Mandare A B, Ambast S K, Tyagi N K, et al. On-farm water management in saline groundwater area under scarce canal water supply condition in the northwest India[J]. Agricultural Water Management, 2008, 95(5): 516-526.
[9] Wahba M A S, Christen E W. Modeling subsurface drainage for salt load management in southeastern Australia[J]. Irrigation and Drainage Systems, 2006, 20(2-3): 267-282.
[10] Fan X, Pedroli B, Liu G, et al. Soil salinity development in the Yellow River Delta in relation to groundwater dynamics[J]. Land Degradation & Development, 2012, 23(2): 175-189.
[11] 曾邯斌, 苏春利, 谢先军, 等. 河套灌区西部浅层地下水咸化机制[J]. 地球科学, 2021, 46(6): 2267-2277.
  [Zeng Hanbin, Su Chunli, Xie Xianjun, et al. Mechanism of salinization of shallow groundwater in western Hetao Irrigation Area[J]. Earth Science, 2021, 46(6): 2267-2277.]
[12] Rengasamy P. World salinization with emphasis on Australia[J]. Journal of Experimental Botany, 2006, 57(5): 1017-1023.
[13] 樊自立, 马英杰, 马映军. 中国西部地区的盐渍土及其改良利用[J]. 干旱区研究, 2001, 18(3): 1-6.
  [Fan Zili, Ma Yingjie, Ma Yingjun. Salinized soils and their improvement and utilization in west China[J]. Arid Zone Research, 2001, 18(3): 1-6.]
[14] 苏春利, 纪倩楠, 陶彦臻, 等. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923.
  [Su Chunli, Ji Qiannan, Tao Yanzhen, et al. Differentiation characteristics and main influencing factors of soil salinization in the west of Hetao Irrigation Area[J]. Arid Zone Research, 2022, 39(3): 916-923.]
[15] 崔莉红, 朱焱, 赵天兴, 等. 季节性冻融土壤盐分离子组成与冻结层盐分运移规律研究[J]. 农业工程学报, 2019, 35(10): 75-82.
  [Cui Lihong, Zhu Yan, Zhao Tianxing, et al. Soil ion components and soil salts transport in frozen layer in seasonal freezing-thawing areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 75-82.]
[16] 李瑞平. 冻融土壤水热盐运移规律及其SHAW模型模拟研究[D]. 呼和浩特: 内蒙古农业大学, 2007.
  [Li Ruiping. Study on soil water-heat-salt transfer during freezing-thawing and its simulation by SHAW[D]. Hohhot: Inner Mongolia Agricultural University, 2007.]
[17] 汪林, 甘泓, 于福亮, 等. 西北地区盐渍土及其开发利用中存在问题的对策[J]. 水利学报, 2001(6): 90-95.
  [Wang Lin, Gan Hong, Yu Fuliang, et al. Salted soil and its development in northwest China[J]. Journal of Hydraulic Engineering, 2001(6): 90-95.]
[18] 蒋磊, 刘小龙, 郭帅, 等. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867.
  [Jiang Lei, Liu Xiaolong, Guo Shuai, et al. Evaluation of soil salinization susceptibility based on Logistic regression analysis: A case of Tarim irrigation area in southern Xinjiang[J]. Arid Land Geography, 2023, 46(11): 1858-1867.]
[19] Daliakopoulos I N, Tsanis I K, Koutroulis A, et al. The threat of soil salinity: A European scale review[J]. Science of the Total Environment, 2016, 573: 727-739.
[20] 王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6): 120-125.
  [Wang Xuequan, Gao Qianzhao, Lu Qi. Effective use of water resources and salinity and waterlogging control in the Hetao Irrigation Areas of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6): 120-125.]
[21] Kramer I, Mau Y. Modeling the effects of salinity and sodicity in agricultural systems[J]. Water Resources Research, 2023, 59(6): e2023WR034750, doi: 10.1029/2023WR034750.
[22] Zou P, Yang J S, Fu J R, et al. Artificial neural network and time series models for predicting soil salt and water content[J]. Agricultural Water Management, 2010, 97(12): 2009-2019.
[23] Lei G, Zeng W, Yu J, et al. A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields[J]. Agricultural Water Management, 2023, 277( 2023): 108115, doi: 10.1016/j.agwat.2022.108115.
[24] 解雪峰, 濮励杰, 朱明, 等. 土壤水盐运移模型研究进展及展望[J]. 地理科学, 2016, 36(10): 1565-1572.
  [Xie Xuefeng, Pu Lijie, Zhu Ming, et al. Evolution and prospect in modeling of water and salt transport in soils[J]. Scientia Geographica Sinica, 2016, 36(10): 1565-1572.]
[25] 胡安焱, 高瑾, 贺屹, 等. 干旱内陆灌区土壤水盐模型[J]. 水科学进展, 2002, 13(6): 726-729.
  [Hu Anyan, Gao Jin, He Yi, et al. Soil water and salt balance model for irrigation district in arid and inland region[J]. Advances in Water Science, 2002, 13(6): 726-729.]
[26] Liu Y N, Zhu Y, Mao W, et al. Development and application of a water and salt balance model for well-canal conjunctive irrigation in semiarid areas with shallow water tables[J]. Agriculture, 2022, 12(3): 399, doi: 10.3390/agriculture12030399.
[27] Szabolcs I. Salt balance in saline and alkali soils[J]. Acta Agronomica Academiae Scientiarum Hungaricae, 1976, 25(1-2): 231-242.
[28] Yao R J, Yang J S, Zhang T J, et al. Studies on soil water and salt balances and scenarios simulation using SaltMod in a coastal reclaimed farming area of eastern China[J]. Agricultural Water Management, 2014, 131: 115-123.
[29] Inam A, Adamowski J, Prasher S, et al. Parameter estimation and uncertainty analysis of the spatial agro hydro salinity model (SAHYSMOD) in the semi-arid climate of Rechna Doab, Pakistan[J]. Environmental Modelling & Software, 2017, 94: 186-211.
[30] Liu Y, Zeng W Z, Ao C, et al. Strategy of subsurface pipe drainage system to alleviate soil salinization based on the DRAINMOD model[J]. Irrigation and Drainage, 2022, 71(1): 120-136.
[31] Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
[32] 李保国, 胡克林, 黄元仿, 等. 土壤溶质运移模型的研究及应用[J]. 土壤, 2005, 37(4): 345-352.
  [Li Baoguo, Hu Kelin, Huang Yuanfang, et al. Advances in modeling and applications of soil solute transport[J]. Soils, 2005, 37(4): 345-352.]
[33] Nielsen D R, Biggar J W. Miscible displacement: III. Theoretical considerations[J]. Soil Science Society of America Journal, 1962, 26(3): 216-221.
[34] Vereecken H, Schnepf A, Hopmans J W, et al. Modeling soil processes: Review, key challenges, and new perspectives[J]. Vadose Zone Journal, 2016, 15(5): vzj2015.09.0131, doi: 10.2136/vzj2015.09.0131.
[35] 焦会青, 盛钰, 赵成义, 等. 基于 COMSOL 软件的绿洲盐渍化土壤中多离子耦合运移模型构建[J]. 农业工程学报, 2018, 34(15): 100-107.
  [Jiao Huiqing, Sheng Yu, Zhao Chengyi, et al. Modeling of multiple ions coupling transport for salinizes soil in oasis based on COMSOL[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 100-107.]
[36] Kramer I, Mau Y. Soil degradation risks assessed by the SOTE model for salinity and sodicity[J]. Water Resources Research, 2020, 56(10): e2020WR027456, doi: 10.1029/2020WR027456.
[37] Zhu C M, Ding J L, Zhang Z P. Revealing the scale- and location-specific variation and control factors of soil salinity using bi-dimensional empirical modal decomposition[J]. Land Degradation & Development, 2022, 33(17): 3446-3460.
[38] Wang H D, She D L, Cardoso R. Understanding the effect of seasonal climate variability on the salinity in unsaturated agricultural soil[J]. Agronomy, 2023, 13(11): 2802, doi: 10.3390/agronomy13112802.
[39] Jury W A, Sposito G, White R E. A transfer function model of solute transport through soil: 1. Fundamental concepts[J]. Water Resources Research, 1986, 22(2): 243-247.
[40] 吴谋松. 冻融土壤水热盐运移规律研究及数值模拟[D]. 武汉: 武汉大学, 2016.
  [Wu Mousong. Water, heat and solute transport in frozen soil: Experimental and modeling study[D]. Wuhan: Wuhan University, 2016.]
[41] 熊吕阳. 干旱地下水浅埋农业流域水转化多过程模拟及用水调控研究[D]. 北京: 中国农业大学, 2021.
  [Xiong Lüyang. Modeling agro-hydrological multi-processes and studying the regulation of water use for arid agricultural watersheds with shallow groundwater[D]. Beijing: China Agricultural University, 2021.]
[42] Xun Y H, Xiao X, Sun C, et al. Modeling heat-water-salt transport, crop growth and water use in arid seasonally frozen regions with an improved coupled SPAC model[J]. Journal of Hydrology, 2022, 615: 128703, doi: 10.1016/j.jhydrol.2022.128703.
[43] Lu P, Yang Y, Luo W, et al. Numerical simulation of soil water-salt dynamics and agricultural production in reclaiming coastal areas using subsurface pipe drainage[J]. Agronomy, 2023, 13(2): 588, doi: 10.3390/agronomy13020588.
[44] 罗长寿, 左强, 李保国, 等. 冬小麦生长条件下改进遗传算法在根系水盐运移模型中的应用研究[J]. 农业工程学报, 2005, 21(11): 38-42.
  [Luo Changshou, Zuo Qiang, Li Baoguo, et al. Simulating soil water and solute transport in a soil-wheat system using a neural network model with an improved genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(11): 38-42.]
[45] Xu X, Huang G H, Sun C, et al. Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River Basin[J]. Agricultural Water Management, 2013, 125: 46-60.
[46] 杨树青, 杨金忠, 史海滨, 等. 干旱区微咸水灌溉的水-土环境效应预测研究[J]. 水利学报, 2008, 39(7): 854-862.
  [Yang Shuqing, Yang Jinzhong, Shi Haibin, et al. Prediction of water-soil environment effect under brackish water irrigation in arid area[J]. Journal of Hydraulic Engineering, 2008, 39(7): 854-862.]
[47] Xiao X, Xu X, Ren D Y, et al. Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use[J]. Agricultural Water Management, 2021, 249: 106811, doi: 10.1016/j.agwat.2021.106811.
[48] Bailey R T, Hosseini P. Comprehensive simulation of salinity transport in irrigated watersheds using an updated version of SWAT-MODFLOW[J]. Environmental Modelling & Software, 2023, 159: 105566, doi: 10.1016/j.envsoft.2022.105566.
[49] Utset A, Borroto M. A modeling-GIS approach for assessing irrigation effects on soil salinization under global warming conditions[J]. Agricultural Water Management, 2001, 50(1): 53-63.
[50] Ren D Y, Wei B Y, Xu X, et al. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches[J]. Geoderma, 2019, 356: 113935, doi: 10.1016/j.geoderma.2019.113935.
[51] Xiong L Y, Xu X, Ren D Y, et al. Enhancing the capability of hydrological models to simulate the regional agro-hydrological processes in watersheds with shallow groundwater: Based on the SWAT framework[J]. Journal of Hydrology, 2019, 572: 1-16.
[52] 黄亚捷, 李贞, 卓志清, 等. 用SahysMod模型研究不同灌排管理情景土壤水盐动态[J]. 农业工程学报, 2020, 36(11): 129-140.
  [Huang Yajie, Li Zhen, Zhuo Zhiqing, et al. Soil water and salt dynamics under different irrigation and drainage management scenarios based on SahysMod model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 129-140.]
[53] Qureshi A S, Eshmuratov D, Bezborodov G. Determining optimal groundwater table depth for maximizing cotton production in the Sardarya Province of Uzbekistan[J]. Irrigation and Drainage, 2011, 60(2): 241-252.
[54] 张雪晨, 李越, 陈志君, 等. 膜下滴灌土壤水盐与玉米产量对节水控盐灌溉模式响应的模拟[J]. 农业工程学报, 2022, 38(增刊1): 47-58.
  [Zhang Xuechen, Li Yue, Chen Zhijun, et al. Simulation of the responses of soil water, salt and maize yield to water-saving irrigation and salinity control regimes under mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(Suppl. 1): 47-58.]
[55] 陈艳梅, 王少丽, 高占义, 等. 基于SALTMOD模型的灌溉水矿化度对土壤盐分的影响[J]. 灌溉排水学报, 2012, 31(3): 11-16.
  [Chen Yanmei, Wang Shaoli, Gao Zhanyi, et al. Effect of irrigation water mineralization on soil salinity based on SALTMOD model[J]. Journal of Irrigation and Drainage, 2012, 31(3): 11-16.]
[56] Rasouli F, Kiani Pouya A, ?im?nek J. Modeling the effects of saline water use in wheat-cultivated lands using the UNSATCHEM model[J]. Irrigation Science, 2013, 31: 1009-1024.
[57] 庄旭东, 冯绍元, 于昊, 等. SWAP模型模拟暗管排水条件下土壤水盐运移[J]. 灌溉排水学报, 2020, 39(8): 93-101.
  [Zhuang Xudong, Feng Shaoyuan, Yu Hao, et al. Simulating water flow and salt transport in soil under the impact of subsurface drains using the SWAP model[J]. Journal of Irrigation and Drainage, 2020, 39(8): 93-101.]
[58] Eishoeei E, Nazarnejad H, Miryaghoubzadeh M. Temporal soil salinity modeling using SaltMod model in the west side of Urmia hyper saline lake, Iran[J]. Catena, 2019, 176: 306-314.
文章导航

/