生物与土壤

W-OH固化剂对高寒矿区煤矸石水分入渗的影响及模型拟合

  • 杨鹏辉 ,
  • 杨海龙 ,
  • 杨思远 ,
  • 张巍 ,
  • 张颂扬
展开
  • 北京林业大学水土保持学院,北京 100083
杨鹏辉(1996-),男,硕士研究生,主要从事高寒矿区阻水层重构研究. E-mail: yang_penghui1122@163.com
杨海龙(1966-),男,博士,副教授,主要从事水土保持、流域治理研究. E-mail: yang_hlong@163.com

收稿日期: 2023-11-23

  修回日期: 2024-03-12

  网络出版日期: 2024-09-24

基金资助

国家重点研发计划项目(2022YFF1302604)

Effect of W-OH stabilizer on water infiltration of coal gangue in high-cold mining areas and model fitting

  • YANG Penghui ,
  • YANG Hailong ,
  • YANG Siyuan ,
  • ZHANG Wei ,
  • ZHANG Songyang
Expand
  • Collge of Soil and Water Conservation, Beijing Forestry University, Beijing 100083

Received date: 2023-11-23

  Revised date: 2024-03-12

  Online published: 2024-09-24

摘要

采用室内积水条件下煤矸石柱水分入渗模拟试验,研究了不同浓度W-OH(0%、1.5%、2.5%和3.5%)喷施处理对高寒矿区煤矸石水分入渗的影响,同时采用Philip、Kostiakov和Horton 3种入渗模型对入渗过程进行拟合,利用一维代数模型预测煤矸石剖面体积含水率分布特征,并评价模型适用性。结果表明:(1) 累计入渗量和湿润锋前进距离随入渗时间的增加而逐渐增加且与W-OH浓度存在负相关性。同一入渗时刻,W-OH浓度越大,入渗率和湿润锋前进速率越小,与对照(0%W-OH)相比,3种W-OH浓度(1.5%、2.5%、3.5%)处理的初始入渗率分别降低了1.12%、3.59%和9.64%,稳定入渗率分别降低了16.92%、78.46%和89.23%,平均入渗率分别降低了11.35%、58.26%和71.02%。(2) 3种入渗模型都能较好地拟合不同浓度W-OH处理煤矸石水分入渗过程,Philip、Kostiakov和Horton模型的决定系数(R2)均值分别为0.962、0.957和0.967,其中Horton模型的拟合效果较好。(3) 积水入渗过程中同一W-OH浓度,埋深越大,水分入渗至各监测点所需的时间越长,同一深度,W-OH浓度越大,水分入渗至各监测点所需的时间也越长。(4) 一维代数模型可以较好地模拟入渗结束后煤矸石剖面体积含水率分布特征,模拟值与实测值间的均方根误差(RMSE)和平均绝对误差(MAE)分别在2.574%~3.326%之间和2.308%~2.707%之间,符合度指数(D)均在0.92以上。研究结果可以为W-OH固化剂在高寒矿区煤矸石山冻土剖面重构中的应用提供理论指导。

本文引用格式

杨鹏辉 , 杨海龙 , 杨思远 , 张巍 , 张颂扬 . W-OH固化剂对高寒矿区煤矸石水分入渗的影响及模型拟合[J]. 干旱区地理, 2024 , 47(9) : 1542 -1554 . DOI: 10.12118/j.issn.1000-6060.2023.661

Abstract

A simulation experiment was conducted on the water infiltration of coal gangue columns under indoor waterlogging conditions to study the effect of different concentrations of W-OH (0%, 1.5%, 2.5%, and 3.5%) spraying treatment on the water infiltration of coal gangue in high-altitude mining areas. Three infiltration models were used to fit the infiltration process, and a one-dimensional algebraic model was used to predict the distribution characteristics of the volume water content of coal gangue profiles, and the applicability of the model was evaluated. The results indicate that: (1) The cumulative infiltration amount and the distance of wetting front advance gradually increases with the increase of infiltration time, and there is a negative correlation with the concentration of W-OH. At the same infiltration time, the higher the concentration of W-OH, the lower the infiltration rate and wetting front advance rate. Compared with the control (0% W-OH), the initial infiltration rates of the three W-OH concentrations (1.5%, 2.5%, 3.5%) decreased by 1.12%, 3.59%, and 9.64%, respectively. The stable infiltration rates decreased by 16.92%, 78.46%, and 89.23%, respectively, and the average infiltration rates decreased by 11.35%, 58.26%, and 71.02%, respectively. (2) The three infiltration models can all fit the water infiltration process of coal gangue well treated with different concentrations of W-OH. The coefficient of determination (R2) mean values of the Philip, Kostiakov, and Horton model are 0.962, 0.957, and 0.967, respectively. Among them, the Horton model has a good fitting effect. (3) During the process of water infiltration, the larger the burial depth of the same W-OH concentration, the longer it takes for water to infiltrate to each monitoring point. At the same depth, the higher the W-OH concentration, the longer it takes for water to infiltrate to each monitoring point. (4) The one-dimensional algebraic model can effectively simulate the distribution characteristics of volumetric water content in coal gangue profiles after infiltration. The root mean squared error (RMSE) and mean absolute error (MAE) between the simulated and measured values is 2.574%-3.326% and 2.308%-2.707%, respectively, with compliance index (D) values above 0.92. The research results provide theoretical guidance for the application of W-OH solidifying agent in the reconstruction of frozen soil profiles in coal gangue mountains in high-altitude and cold mining areas.

参考文献

[1] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246.
  [Zhao Lin, Hu Guojie, Zou Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246.]
[2] Bense V F, Ferguson G, Kooi H. Evolution of shallow groundwater flow systems in areas of degrading permafrost[J]. Geophysical Research Letters, 2009, 36(22): L039225, doi: 10.1029/2009GL039225.
[3] 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795.
  [Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2783-2795.]
[4] 李聪聪, 王佟, 王辉, 等. 木里煤田聚乎更矿区生态环境修复监测技术与方法[J]. 煤炭学报, 2021, 46(5): 1451-1462.
  [Li Congcong, Wang Tong, Wang Hui, et al. Monitoring technology and method of ecological environment rehabilitation and treatment in Jühugeng mining area[J]. Journal of China Coal Society, 2021, 46(5): 1451-1462.]
[5] 韩瑾, 周伟, 郭平. 青藏高原矿区土地利用动态变化研究——以青海省聚乎更矿区为例[J]. 矿山测量, 2017, 45(2): 108-113.
  [Han Jin, Zhou Wei, Guo Ping. Research on dynamic change of land use in Qinghai-Tibetan Plateau mine area: A case study of Jühugeng mine area[J]. Mine Surveying, 2017, 45(2): 108-113.]
[6] 曹伟, 盛煜, 陈继. 青海木里煤田冻土环境评价研究[J]. 冰川冻土, 2008(1): 157-164.
  [Cao Wei, Sheng Yu, Chen Ji. Study of the permafrost environmental assessment in Muli coalfield[J]. Journal of Glaciology and Geocryology, 2008(1): 157-164.]
[7] 李凤明, 白国良, 韩科明. 木里矿区生态环境受损特征及治理方法研究[J]. 煤炭工程, 2021, 53(10): 116-121.
  [Li Fengming, Bai Guoliang, Han Keming. Characteristics and treatment methods of ecological environment damage in Muli mining area[J]. Coal Engineering, 2021, 53(10): 116-121.]
[8] 温欣, 尚海丽, 黄显武, 等. 不同沉陷应力区土壤水分和溶质运移的模拟试验[J]. 干旱区地理, 2023, 46(9): 1481-1492.
  [Wen Xin, Shang Haili, Huang Xianwu, et al. Simulation experiment on soil moisture and solute transport in different subsidence stress regions[J]. Arid Land Geography, 2023, 46(9): 1481-1492.]
[9] 张锂, 韩国才, 陈慧, 等. 黄土高原煤矿区煤矸石中重金属对土壤污染的研究[J]. 煤炭学报, 2008(10): 1141-1146.
  [Zhang Li, Han Guocai, Chen Hui, et al. Study on heavy metal contaminants in soil come from coal mining spoil in the Loess Plateau[J]. Journal of China Coal Society, 2008(10): 1141-1146.]
[10] 梁止水, 吴智仁, 杨才千, 等. 基于W-OH的砒砂岩抗蚀促生机理研究[J]. 水利学报, 2016, 47(9): 1160-1166.
  [Liang Zhishui, Wu Zhiren, Yang Caiqian, et al. Mechanism of erosion resistance and vegetation promotion by W-OH in pisha sandstone[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1160-1166.]
[11] Verdolotti L, Iannace S, Lavorgna M, et al. Geopolymerization reaction to consolidate incoherent pozzolanic soil[J]. Journal of Materials Science, 2008, 43(3): 865-873.
[12] Kochetkova G R. Influence of modern stabilizers on improved properties of clayey soils[J]. Soil Mechanics and Foundation Engineering, 2012, 49(1): 12-15.
[13] Onyejekwe S, Ghataora S G. Soil stabilization using proprietary liquid chemical stabilizers: Sulphonated oil and a polymer[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 651-665.
[14] 张冠华, 胡甲均. W-OH固化剂对土壤水渗漏及硝态氮淋失的影响[J]. 中国土壤与肥料, 2018(3): 168-174.
  [Zhang Guanhua, Hu Jiajun. Effects of W-OH stabilizer on soil water percolation and nitrate nitrogen leaching[J]. Soil and Fertilizer Sciences in China, 2018(3): 168-174.]
[15] 赵显涛. 聚氨酯固化砂性土在不同温度下的抗压性能试验研究[J]. 科技创新与应用, 2023, 13(18): 69-73.
  [Zhao Xiantao. Experimental study on compressive performance of polyurethane cured sandy soil at different temperatures[J]. Technology Innovation and Application, 2023, 13(18): 69-73.]
[16] 余莹莹, 汪永进, 范敬兰, 等. W-OH生态护坡技术在沙土区河道坡面上的应用[J]. 治淮, 2014(8): 31-32.
  [Yu Yingying, Wang Yongjin, Fan Jinglan, et al. Ecological slope protection technology of W-OH applied on the surface of the river channel slope in sandy area[J]. Harnessing the Huaihe River, 2014(8): 31-32.]
[17] 李润杰, 郜志勇, 李添萍, 等. 生态恢复新材料特性及在三江源地区沙化地植被修复中的应用[C]// 中国水土保持学会水土保持生态修复专业委员会, 水土保持与荒漠化防治教育部重点实验室, 林业生态工程教育部工程研究中心. 全国水土保持生态修复学术研讨会论文集. 西安: 西安理工大学, 2009: 36-42.
  [Li Runjie, Gao Zhiyong, Li Tianping, et al. Characteristics of new materials for ecological restoration and their application in vegetation restoration of sandy land in the Three River Source Area[C]// The Professional Committee of Soil and Water Conservation and Ecological Restoration of the Chinese Society of Soil and Water Conservation, the Key Laboratory of Soil and Water Conservation and Desertification Prevention and Control of the Ministry of Education, Engineering Research Center of Forestry Ecological Engineering of the Ministry of Education. Proceedings of the National Symposium on Soil and Water Conservation and Ecological Restoration. Xi’an: Xi’an University of Technology, 2009: 36-42.]
[18] 郭凯先. W-OH新材料特性及在青海湖周边地区沙化地植生固沙中的应用[J]. 中国农村水利水电, 2012(4): 30-32, 37.
  [Guo Kaixian. Characteristics of the new chemical material W-OH in the revegetation of desertified areas around Qinghai Lake and their application[J]. China Rural Water and Hydropower, 2012(4): 30-32, 37.]
[19] 陈梦兰. 崩岗土壤渗透性能及改良实验研究[D]. 武汉: 华中农业大学, 2019.
  [Chen Menglan. Research on the collapsing gully soil permeability and the improvement experiment[D]. Wuhan: Huazhong Agricultural University, 2019.]
[20] 王欣, 朱绪超, 梁音, 等. 新型W-OH材料对南方典型侵蚀土壤入渗和产流产沙的影响[J]. 中国水土保持科学, 2020, 18(6): 123-131.
  [Wang Xin, Zhu Xuchao, Liang Yin, et al. Effects of new polyurethane material (W-OH) on infiltration and runoff and sediment yield of two typical erodible soils in south China[J]. Science of Soil and Water Conservation, 2020, 18(6): 123-131.]
[21] 王黎军. W-OH新型防渗材料在高寒干旱区渠道中的应用研究[J]. 节水灌溉, 2011(4): 28-30, 34.
  [Wang Lijun. Research of application of new anti-seepage materials W-OH in the channels of alpine arid zone[J]. Water Saving Irrigation, 2011(4): 28-30, 34.]
[22] 朱秀迪, 丁文峰, 张冠华, 等. 新型水溶性聚氨酯对紫色土坡面产流产沙的影响[J]. 长江科学院院报, 2018, 35(1): 47-51.
  [Zhu Xiudi, Ding Wenfeng, Zhang Guanhua, et al. Impact of new water-soluble polyurethane on runoff and sediment yield on purple soil slope[J]. Journal of Changjiang River Scientific Research Institute, 2018, 35(1): 47-51.]
[23] 裴宗阳, 胡振华, 刘瑞龙, 等. 我国煤矸石山水分研究进展[J]. 山西水土保持科技, 2011(2): 4-6.
  [Pei Zongyang, Hu Zhenhua, Liu Ruilong, et al. Progress in research on moisture of coal gangue pile in China[J]. Soil and Water Conservation Science and Technology in Shanxi, 2011(2): 4-6.]
[24] 马保国, 王健, 刘婧然, 等. 煤矸石基质土壤的水分入渗试验研究[J]. 煤炭学报, 2014, 39(12): 2501-2506.
  [Ma Baoguo, Wang Jian, Liu Jingran, et al. Experimental study on water infiltration of soil weathering coal gangue[J]. Journal of China Coal Society, 2014, 39(12): 2501-2506.]
[25] 李娜, 耿玉清, 赵新宇, 等. 生物炭和PAM混施影响煤矸石基质水分的入渗和蒸发[J]. 水土保持学报, 2020, 34(2): 290-295.
  [Li Na, Geng Yuqing, Zhao Xinyu, et al. Mixed application of biochar and PAM influences water infiltration and evaporation of coal gangue matrix[J]. Journal of Soil and Water Conservation, 2020, 34(2): 290-295.]
[26] 魏忠义, 王萍, 王秋兵. 膨胀性阻水层对煤矸石山水分入渗的影响[J]. 水土保持学报, 2010, 24(2): 188-191.
  [Wei Zhongyi, Wang Ping, Wang Qiubing. Effect of expansive water-resisting layer on water infiltration of coal waste[J]. Journal of Soil and Water Conservation, 2010, 24(2): 188-191.]
[27] 高卫民, 吴智仁, 吴智深, 等. 荒漠化防治新材料W-OH的力学性能研究[J]. 水土保持学报, 2010, 24(5): 1-5, 162.
  [Gao Weimin, Wu Zhiren, Wu Zhishen, et al. Study on mechanical properties of a novel desertification prevention material of W-OH[J]. Journal of Soil and Water Conservation, 2010, 24(5): 1-5, 162.]
[28] 虎军宏. 压砂地滴灌对土壤水热运移影响的模拟研究[D]. 兰州: 兰州理工大学, 2022.
  [Hu Junhong. Simulation study on the effect of drip irrigation on soil water and heat transfer of gravel-mulched fields[D]. Lanzhou: Lanzhou University of Technology, 2022.]
[29] 邹焱, 陈洪松, 苏以荣, 等. 红壤积水入渗及土壤水分再分布规律室内模拟试验研究[J]. 水土保持学报, 2005(3): 174-177.
  [Zou Yan, Chen Hongsong, Su Yirong, et al. Study on ponded water infiltration and soil water redistribution in red soil[J]. Journal of Soil and Water Conservation, 2005(3): 174-177.]
[30] 邱德勋, 尹殿胜, 穆兴民, 等. 聚丙烯酰胺施用量、初始含水率和容重对土壤水分入渗特性的影响[J]. 土壤通报, 2022, 53(2): 333-340.
  [Qiu Dexun, Yin Diansheng, Mu Xingmin, et al. Effects of polyacrylamide application amounts, initial water contents and bulk densities on soil infiltration characteristics[J]. Chinese Journal of Soil Science, 2022, 53(2): 333-340.]
[31] 曾辰, 王全九, 樊军. 初始含水率对土壤垂直线源入渗特征的影响[J]. 农业工程学报, 2010, 26(1): 24-30.
  [Zeng Chen, Wang Quanjiu, Fan Jun. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 24-30.]
[32] 张璐. 一种亲水反应型聚氨酯在藏北退化草原的应用研究[D]. 镇江: 江苏大学, 2020.
  [Zhang Lu. Application of a hydrophilic reactive polyurethane in degraded steppe of northern Tibet[D]. Zhenjiang: Jiangsu University, 2020.]
[33] 钟佩文. 降雨入渗对黄土开挖边坡稳定性影响的研究[D]. 咸阳: 西北农林科技大学, 2017.
  [Zhong Peiwen. Study on the effect of rainfall infiltration on stability of loess excavation slope[D]. Xianyang: Northwest A & F University, 2017.]
[34] 王苏玉. 不同土质土壤水分运移规律研究[J]. 四川环境, 2018, 37(2): 7-12.
  [Wang Suyu. Study on the law of soil water movement in different soil texture[J]. Sichuan Environment, 2018, 37(2): 7-12.]
[35] 闫建梅, 何丙辉, 田太强, 等. 川中丘陵区不同土地利用方式土壤入渗与贮水特征[J]. 水土保持学报, 2014, 28(1): 53-57, 62.
  [Yan Jianmei, He Binghui, Tian Taiqiang, et al. Soil infiltration and water-holding characteristics of different land use in Sichuan Hilly Basin[J]. Journal of Soil and Water Conservation, 2014, 28(1): 53-57, 62.]
[36] 王全九, 来剑斌, 李毅. Green-Ampt模型与Philip入渗模型的对比分析[J]. 农业工程学报, 2002(2): 13-16.
  [Wang Quanjiu, Lai Jianbin, Li Yi. Comparison of Green-Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002(2): 13-16.]
[37] 王幼奇, 阮晓晗, 白一茹, 等. 不同种植年限压砂地土壤水分入渗过程及模型分析[J]. 排灌机械工程学报, 2022, 40(10): 1048-1055.
  [Wang Youqi, Ruan Xiaohan, Bai Yiru, et al. Process of soil moisture infiltration and model analysis of gravel-mulched land with different planting years[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(10): 1048-1055.]
[38] 吴畏, 高佩玲, 郭祥林, 等. 微咸水与生物炭协同作用对盐碱土入渗特征及水盐运移的影响[J]. 干旱地区农业研究, 2023, 41(2): 160-167.
  [Wu Wei, Gao Peiling, Guo Xianglin, et al. Effects of synergism of brackish water and biochar on infiltration characteristics and water-salt migration in saline-alkali soil[J]. Agricultural Research in the Arid Areas, 2023, 41(2): 160-167.]
文章导航

/