气候与水文

中国粮食生产用水绿色效率与回弹效应研究——基于三阶段超效率SBM-Malmquist模型

  • 罗静怡 ,
  • 东梅
展开
  • 1.宁夏大学农学院,宁夏 银川 750021
    2.宁夏大学经济管理学院,宁夏 银川 750021
罗静怡(1995-),女,硕士研究生,主要从事农业水资源利用、农村发展研究. E-mail: ljy9178@126.com
东梅(1971-),女,博士,教授,主要从事农业水资源利用、农村经济发展研究. E-mail: pr2003@126.com

收稿日期: 2023-10-31

  修回日期: 2023-11-30

  网络出版日期: 2024-09-24

基金资助

国家自然科学基金项目(72363029);国家自然科学基金项目(72063025);宁夏自然科学基金项目(2023AAC03097)

Green efficiency and rebound effect of water for grain production in China: Based on the three-stage super-efficiency SBM-Malmquist model

  • LUO Jingyi ,
  • DONG Mei
Expand
  • 1. College of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
    2. School of Economics and Management, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2023-10-31

  Revised date: 2023-11-30

  Online published: 2024-09-24

摘要

提高粮食生产用水绿色效率是降低农业用水规模、实现农业绿色发展的有效途径之一。基于中国31个省(市、自治区)2010—2020年面板数据,以粮食生产水足迹作为投入指标,粮食生产灰水足迹作为非期望产出,采用三阶段超效率SBM-Malmquist指数模型,对中国粮食生产用水绿色效率进行评价,在此基础上,测算技术进步条件下粮食生产用水的回弹效应。结果表明:(1) 种植结构、灌溉技术和氮肥施用量等因素对粮食生产用水效率影响显著;不同粮食生产水足迹、灰水足迹存在显著差异;灰水足迹平均增长速度排名为:中部>东部>西部。(2) 外部环境对中国粮食生产用水绿色效率具有显著影响;剔除环境因素后,综合技术效率均值下降0.147,纯技术效率均值和规模效率均值分别下降0.018、0.250;粮食生产用水全要素生产率整体处于优化阶段,其主要依赖于技术进步变化。(3) 技术作为提高农业水资源利用效率的主导因素,很大程度上影响了中国粮食生产用水回弹效应的变化节奏。除东部地区2017年粮食生产用水未产生回弹效应外,其他年份均存在回弹效应,农业节水技术地区发展不平衡特征明显。建议加强农业水资源管理,深挖用水效率提升潜力,优化粮食生产要素投入结构,推动节水技术推广与应用,从而减轻水环境污染,实现农业绿色可持续发展。

本文引用格式

罗静怡 , 东梅 . 中国粮食生产用水绿色效率与回弹效应研究——基于三阶段超效率SBM-Malmquist模型[J]. 干旱区地理, 2024 , 47(9) : 1508 -1517 . DOI: 10.12118/j.issn.1000-6060.2023.615

Abstract

Improving the green efficiency of water use for grain production is one of the effective ways to reduce the scale of agricultural water use and realize the green development of agriculture. Based on the panel data of 31 provinces (municipalities and autonomous regions) in China from 2010 to 2020, the green efficiency of water use for grain production is evaluated by using the water footprint of grain production as an input indicator and the gray water footprint of grain production as a non-desired output, using the three-stage super-efficiency SBM-Malmquist index model, based on which the rebound of water use for grain production under the condition of technological progress is measured. The study found that: (1) Factors such as planting structure, irrigation technology and nitrogen fertilizer application have a significant impact on the water use efficiency of grain production; there are significant differences in the water footprint and gray water footprint of different grains; the average growth rate of the gray water footprint is ranked as follows: central China>eastern China>western China. (2) The external environment has a significant impact on the green efficiency of water use for grain production in China; after removing the environmental factors, the mean value of comprehensive technical efficiency decreases by 0.147, the mean value of pure technical efficiency and the mean value of scale efficiency decreases by 0.018 and 0.250, respectively; the green total factor productivity of water use for grain production as a whole is in the optimization stage, which is mainly dependent on the changes of technological progress. (3) Technology, as the dominant factor in improving agricultural water use efficiency, largely influences the pace of change in the rebound effect of water use for grain production in China. In addition to the eastern region in 2017, the rebound effect of water for grain production did not occur, the rebound effect exists in all other years, and the regional development of agricultural water conservation technology is characterized by an obvious imbalance. It is recommended to strengthen the management of agricultural water resources, deepen the potential of water use efficiency improvement, optimize the input structure of food production factors, and promote the up-lift and application of water-saving technologies, so as to mitigate water environmental pollution and realize the green and sustainable development of agriculture.

参考文献

[1] 陈杰, 许朗. 基于面板三阶段DEA-Malmquist模型的中国农业绿色水资源利用效率研究[J]. 地理科学, 2023, 43(4): 709-718.
  [Chen Jie, Xu Lang. Utilization efficiency of Chinese agricultural green water resources based on panel three-stage DEA-Malmquist model[J]. Scientia Geographica Sinica, 2023, 43(4): 709-718.]
[2] 孙才志, 姜坤, 赵良仕. 中国水资源绿色效率测度及空间格局研究[J]. 自然资源学报, 2017, 32(12): 1999-2011.
  [Sun Caizhi, Jiang Kun, Zhao Liangshi. Measurement of green efficiency of water utilization and its spatial pattern in China[J]. Journal of Natural Resources, 2017, 32(12): 1999-2011.]
[3] 褚家琦, 蒋志辉. 新疆农业水资源绿色效率时空演变及影响因素研究[J]. 干旱区地理, 2024, 47(7): 1231-1241.
  [Chu Jiaqi, Jiang Zhihui. Spatiotemporal evolution and influencing factors of green efficiency of agricultural water resources in Xinjiang[J]. Arid Land Geography, 2024, 47(7): 1231-1241.]
[4] 曹姗姗, 何昭丽, 徐力璇, 等. 区域旅游发展对水资源绿色效率的影响及其时空分异[J]. 经济地理, 2023, 43(7): 215-224.
  [Cao Shanshan, He Zhaoli, Xu Lixuan, et al. The impact of tourism development on green efficiency of water resources in China and its spatial-temporal differentiation[J]. Economic Geography, 2023, 43(7): 215-224.]
[5] 王纪凯, 张峰, 油建盛, 等. 黄河流域工业绿色水资源效率空间网络关联特征[J]. 地理科学, 2023, 43(6): 1032-1042.
  [Wang Jikai, Zhang Feng, You Jiansheng, et al. Correlation characteristics of spatial network of industrial green water resources efficiency in the Yellow River Basin[J]. Scientia Geographica Sinica, 2023, 43(6): 1032-1042.]
[6] Souissi A, Mtimet N, McCann L, et al. Determinants of food consumption water footprint in the Mena region: The case of Tunisia[J]. Sustainability, 2022, 14(3): 1539, doi: 10.3390/su14031539.
[7] Silva D L R, Rivero-Camacho C, Rusu D. Methodology for improving the sustainability of industrial buildings via matrix of combinations water and carbon footprint assessment[J]. Sustainability, 2022, 14(22): 15297, doi: 10.3390/su142215297.
[8] Karandish F, Hoekstra A Y. Informing national food and water security policy through water footprint assessment: The case of Iran[J]. Water, 2017, 9(11): 831, doi: 10.3390/w9110831.
[9] Muratoglu A. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey[J]. Science of the Total Environment, 2020, 742: 140553, doi: 10.1016/j.scitotenv.2020.140553.
[10] 胡东兰, 申颢, 刘自敏. 中国城市能源回弹效应的时空演变与形成机制研究[J]. 中国软科学, 2019(11): 96-108.
  [Hu Donglan, Shen Hao, Liu Zimin. Study on the spatial-temporal evolution and formation mechanism energy rebound effect in Chinese cities[J]. China Soft Science, 2019(11): 96-108.]
[11] Nesta H, Martin D, Lekha W. Farm level effects of on-farm irrigation infrastructure programs in the southern Murray-Darling Basin[J]. Australian Economic Review, 2020, 53(4): 494-516.
[12] Wheeler S A, Carmody E, Grafton Q, et al. The rebound effect on water extraction from subsidising irrigation infrastructure in Australia[J]. Resources, Conservation and Recycling, 2020, 159: 104755, doi: 10.1016/j.resconrec.2020.104755.
[13] 陈红, 王浩坤, 秦帅. 水足迹视角下黑龙江粮食生产用水绿色效率研究——基于三阶段SBM-Malmquist指数分析法[J]. 长江流域资源与环境, 2020, 29(12): 2790-2804.
  [Chen Hong, Wang Haokun, Qin Shuai. Study on green efficiency of grain water in Heilongjiang Province from the perspective of water footprint: Based on three-stage SBM-Malmquist index analysis method[J]. Resources and Environment in the Yangtze Basin, 2020, 29(12): 2790-2804.]
[14] 唐书玥, 任思琪, 李子怡, 等. 我国不同参考作物蒸散经验模型适用性分析及参数修正[J]. 中国农业大学学报, 2023, 28(10): 1-14.
  [Tang Shuyue, Ren Siqi, Li Ziyi, et al. Applicability analysis of the empirical models for evapotranspiration of different reference crops in China and their parameters corrections[J]. Journal of China Agricultural University, 2023, 28(10): 1-14.]
[15] 傅迎豪, 申晓晶, 李王成, 等. 基于Hargreaves-Samani回归修正的作物参考蒸散发计算适用性研究[J]. 干旱区地理, 2022, 45(6): 1752-1760.
  [Fu Yinghao, Shen Xiaojing, Li Wangcheng, et al. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction[J]. Arid Land Geography, 2022, 45(6): 1752-1760.]
[16] Hoekstra A Y, Chapagain A K, Aldaya M M, et al. The water footprint assessment manual: Setting the global standard[M]. London: Routledge, 2011.
[17] 李长红, 许海涛, 孙联合. 夏玉米形态指标、氮肥利用及抗倒特性对密度与氮肥耦合效应的响应[J]. 江苏农业科学, 2022, 50(11): 63-70.
  [Li Changhong, Xu Haitao, Sun Lianhe. Response of morphological index, nitrogen utilization and lodging resistance characteristics of summer maize to coupling effect of density and nitrogen fertilizer[J]. Jiangsu Agricultural Sciences, 2022, 50(11): 63-70.]
[18] 张仔罗, 文雯, 曹硕, 等. 滴灌灌溉量和频次对小麦—青贮玉米复播体系蒸发蒸腾量和作物系数的影响[J]. 江苏农业科学, 2019, 47(13): 104-109.
  [Zhang Ziluo, Wen Wen, Cao Shuo, et al. Influences of drip irrigation amount and frequency on evapotranspiration and crop coefficient of wheat-silage corn double cropping system[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 104-109.]
[19] 张炜, 覃求. 水足迹视角下陕西省种植业水资源利用评价及经济发展脱钩分析[J]. 中国生态农业学报, 2019, 27(1): 153-162.
  [Zhang Wei, Qin Qiu. Decoupling analysis on water resources utilization of planting industry and economic development in Shaanxi Province from the perspective of water footprint[J]. Chinese Journal of Eco-Agriculture, 2019, 27(1): 153-162.]
[20] 包菡, 傅建伟, 张雷, 等. 内蒙古典型农田地表径流氮磷流失特征[J]. 中国农技推广, 2021, 37(11): 67-69.
  [Bao Han, Fu Jianwei, Zhang Lei, et al. Characteristics of nitrogen and phosphorus loss from surface runoff in typical agricultural fields in Inner Mongolia[J]. China Agricultural Technology Extension, 2021, 37(11): 67-69.]
[21] Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509.
[22] 吉雪强, 尚杰. 基于三阶段SBM模型的中国农业生态效率研究[J]. 中国农业资源与区划, 2021, 42(7): 210-217.
  [Ji Xueqiang, Shang Jie. A study on China’s agricultural ecological efficiency based on the third stage SBM model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(7): 210-217.]
[23] Fare R, Grosskopf S, Knox L C A. Production frontiers: Frontmatter[M]. Cambridge: Cambridge University Press, 1993.
[24] 刘自敏, 朱朋虎, 邓明艳, 等. 能源效率内生化、回弹效应非对称性与减排潜力估算——基于中国城市电力数据的实证分析[J]. 南京财经大学学报, 2022(1): 64-74.
  [Liu Zimin, Zhu Penghu, Deng Mingyan, et al. Endogenous energy efficiency, rebound effect asymmetry, and emission reduction potential estimation: An empirical analysis based on city power data in China[J]. Journal of Nanjing University of Finance and Economics, 2022(1): 64-74.]
[25] 崔海洋, 卓雯君, 虞虎, 等. 基于三阶段DEA模型的农业生产效率及其时空特征研究——以长江经济带为例[J]. 中国生态农业学报, 2021, 29(7): 1243-1252.
  [Cui Haiyang, Zhuo Wenjun, Yu Hu, et al. Calculation of agricultural production efficiency based on a three-stage data envelopment analysis model and analysis of the spatial-temporal characteristics: An example from the Yangtze River Economic Belt[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1243-1252.]
[26] 李强, 魏巍, 徐康宁. 技术进步和结构调整对能源消费回弹效应的估算[J]. 中国人口·资源与环境, 2014, 24(10): 64-67.
  [Li Qiang, Wei Wei, Xu Kangning. Estimation of technological progress and structural readjustment on the energy consumption rebound effect[J]. China Population, Resources and Environment, 2014, 24(10): 64-67.]
[27] 徐瑞璠, 赵敏娟, 高建中. 中国农业灰水足迹测度及时空分异研究[J]. 中国农业资源与区划, 2023, 44(10): 52-66.
  [Xu Ruifen, Zhao Minjuan, Gao Jianzhong. Measurement and spatial-temporal variation of agricultural grey water footprint in China[J]. Chinese Journal Agricultural Resources and Regional Planning, 2023, 44(10): 52-66.]
文章导航

/