收稿日期: 2023-11-09
修回日期: 2024-04-16
网络出版日期: 2024-09-24
基金资助
第三次新疆综合科学考察项目(2021xjkk0901);国家自然科学基金项目(42222101)
Spatiotemporal evolutionary patterns and influencing factors of water use in Xinjiang from 1990 to 2020
Received date: 2023-11-09
Revised date: 2024-04-16
Online published: 2024-09-24
干旱缺水是新疆自然地理的基本特征,理解用水时空演化格局及其影响因素是水资源需求管理的前提。采用对数均值迪氏指数(LMDI)方法,解析1990—2020年新疆用水量时间变化趋势和空间差异格局的影响因素,并分析其人均用水量高于中国西北其他地区和全国平均水平的主要原因。结果表明:(1) 新疆用水总量先升后降,人均用水量整体呈现下降趋势。(2) 用水强度和产业结构变化是促使新疆用水总量下降的主要原因。(3) 较高的用水强度和以农业为主导的产业结构是新疆人均用水量远高于中国西北其他地区和全国平均水平的主要原因。(4) 新疆人均用水量空间差异大,主要原因是用水强度、人均GDP和产业结构差异。基于研究结果,提出了相关用水管理政策建议,为新疆水资源可持续开发利用提供科学参考。
关键词: 水资源管理; 对数平均迪氏指数(LMDI)方法; 水资源开发; 空间分异; 新疆
刘慧 , 孙思奥 , 方创琳 , 周迪 , 鲍超 . 1990—2020年新疆用水量时空演化格局及影响因素分析[J]. 干旱区地理, 2024 , 47(9) : 1451 -1461 . DOI: 10.12118/j.issn.1000-6060.2023.636
Drought and water scarcity are inherent features of Xinjiang’s physical geography. It is crucial to understand the spatiotemporal evolutionary patterns and influencing factors of water use for effective water resources demand management. In this study, we investigated the influencing factors which drive the temporal change and spatial heterogeneity in water use pattern in Xinjiang from 1990 to 2020 using the logarithmic mean Divisia index (LMDI) method. In addition, we quantified the main influencing factors contributing to higher per capita water use in Xinjiang in comparison to the average levels of other regions in northwest China and whole China. The conclusions can be drawn: (1) The total water use in Xinjiang showed a first increasing then decreasing trend, whereas per capita water use showed an overall declining trend. (2) The change of water use intensity and industrial structure were the main reasons for the decline of total water use in Xinjiang. (3) High water intensity and agriculture dominated industrial structure were the main reasons for higher per capita water use in Xinjiang than other regions in northwest China and whole China. (4) Per capita water use across various prefectures in Xinjiang exhibited significant spatial heterogeneity, primarily attributable to variations in water use intensity, per capita GDP, and industrial structure. Based on the main results, we propose relevant water management policy recommendations, which can provide a scientific reference for sustainable water use and management in Xinjiang.
[1] | 中华人民共和国水利部. 中国水资源公报2021[R]. 北京: 中国水利水电出版社, 2021. |
[Ministry of Water Resources of the People’s Republic of China. China water resources bulletin 2021[R]. Beijing: China Water & Power Press, 2021.] | |
[2] | 李江. 新形势下新疆重大水利工程科技需求与展望[J]. 水利水电技术, 2019, 50(12): 1-9. |
[Li Jiang. Scientific and technical demands and prospects of major water conservancy projects in Xinjiang under new circumstances[J]. Water Resources and Hydropower Engineering, 2019, 50(12): 1-9.] | |
[3] | 孙宇, 刘维忠, 盛洋. 基于PSR模型的新疆水资源经济生态韧性时空差异及影响因素分析[J]. 干旱区地理, 2023, 46(12): 2017-2028. |
[Sun Yu, Liu Weizhong, Sheng Yang. Spatiotemporal differences and influencing factors of economic and ecological resilience of water resources in Xinjiang based on the PSR model[J]. Arid Land Geography, 2023, 46(12): 2017-2028.] | |
[4] | 邓铭江, 李湘权, 龙爱华, 等. 支撑新疆经济社会跨越式发展的水资源供需结构调控分析[J]. 干旱区地理, 2011, 34(3): 379-389. |
[Deng Mingjiang, Li Xiangquan, Long Aihua, et al. Regulation of supply and demand structure of the water resources and support economic and social leap-forward development of protection measures[J]. Arid Land Georaphy, 2011, 34(3): 379-389.] | |
[5] | 邓铭江. 破解内陆干旱区水资源紧缺问题的关键举措——新疆干旱区水问题发展趋势与调控策略[J]. 中国水利, 2018(6): 14-17. |
[Deng Mingjiang. National water conservation action is a key measure for alleviating water shortage in inland dryareas: A study on the development trend of water issues in the dry areas of Xinjiang and its allocation and regulation strategy[J]. China Water Resources, 2018(6): 14-17.] | |
[6] | Ang B W. Decomposition analysis for policymaking in energy: Which is the preferred method?[J]. Energy Policy, 2004, 32(9): 1131-1139. |
[7] | Fernández González P, Landajo M, Presno M J. Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition: The activity revaluation approach[J]. Energy, 2014, 73(14): 741-750. |
[8] | Wang W W, Liu X, Zhang M, et al. Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption[J]. Energy, 2014, 67: 617-622. |
[9] | Hua F, Alharthi M, Yin W H, et al. Carbon emissions and socioeconomic drivers of climate change: Empirical evidence from the logarithmic mean divisia index (LMDI) base model for China[J]. Sustainability, 2022, 14(4): 2214, doi: 10.3390/su14042214. |
[10] | Ang B W. LMDI decomposition approach: A guide for implementation[J]. Energy Policy, 2015, 86: 233-238. |
[11] | Ang B W, Zhang F Q. A survey of index decomposition analysis in energy and environmental studies[J]. Energy, 2000, 25(12): 1149-1176. |
[12] | 武翠芳, 罗艳, 县雅宁, 等. 西部地区产业用水变化的驱动效应及其时空差异分析[J]. 兰州财经大学学报, 2020, 36(2): 62-72. |
[Wu Cuifang, Luo Yan, Xian Yaning, et al. Analysis on driving effect of industrial water consumption and its spatio-temporal differentiation in western China[J]. Journal of Lanzhou University of Finance and Economics, 2020, 36(2): 62-72.] | |
[13] | 张陈俊, 董娟娟, 林琳, 等. 区域水资源消耗差异的影响因素分析: LMDI 模型的新应用[J]. 水利经济, 2017, 35(6): 71-76. |
[Zhang Chenjun, Dong Juanjuan, Lin Lin, et al. Influence factors for differences in regional water use based on LMDI method[J]. Journal of Economics of Water Resources, 2017, 35(6): 71-76.] | |
[14] | 张陈俊, 吴雨思, 庞庆华, 等. 长江经济带用水量时空差异的驱动效应研究——基于生产和生活视角[J]. 长江流域资源与环境, 2019, 28(12): 2806-2816. |
[Zhang Chenjun, Wu Yusi, Pang Qinghua, et al. Driving effect of spatial-temporal differences in water use in the Yangtze River economic zone from the perspective of production and domestic[J]. Resources and Environment in the Yangtze Basin, 2019, 28(12): 2806-2816.] | |
[15] | 陈新颖, 董增川, 寇嘉玮, 等. 淮河流域总用水量与用水结构变化的响应[J]. 水电能源科学, 2019, 37(2): 35-38. |
[Chen Xinying, Dong Zengchuan, Kou Jiawei, et al. Dynamic relationship analysis between total water consumption and water utilization structure in Huaihe River Basin[J]. Water Resources and Power, 2019, 37(2): 35-38.] | |
[16] | 孙思奥, 汤秋鸿. 黄河流域水资源利用时空演变特征及驱动要素[J]. 资源科学, 2020, 42(12): 2261-2273. |
[Sun Siao, Tang Qiuhong. Spatiotemporal patterns and driving factors of water resources use in the Yellow River Basin[J]. Resources Science, 2020, 42(12): 2261-2273.] | |
[17] | 孙才志, 王妍. 辽宁省产业用水变化驱动效应分解与时空分异[J]. 地理研究, 2010, 29(2): 244-252. |
[Sun Caizhi, Wang Yan. Decomposition of driving effects for industrial water utilization change and spatial temporal difference in Liaoning Province[J]. Geographical Research, 2010, 29(2): 244-252.] | |
[18] | 秦昌波, 葛察忠, 贾仰文, 等. 陕西省生产用水变动的驱动机制分析[J]. 中国人口资源与环境, 2015, 25(5): 131-136. |
[Qin Changbo, Ge Chazhong, Jia Yangwen, et al. Driving mechanism analysis for productive water consumption changes in Shaanxi Province[J]. China Population, Resources and Environment, 2015, 25(5): 131-136.] | |
[19] | 陈杰, 许朗, 吴东立. 华北平原节水技术、灌溉用水量反弹效应与地区异质性——基于Malmquist和LMDI指数分析[J]. 自然资源学报, 2022, 37(8): 2181-2194. |
[Chen Jie, Xu Lang, Wu Dongli. Water-saving technology, rebound effect of irrigation water consumption and regional heterogeneity in North China Plain: Based on Malmquist and LMDI index analysis[J]. Journal of Natural Resources, 2022, 37(8): 2181-2194.] | |
[20] | 史珍, 陆姝颖, 嵇颖婕, 等. 中国工业用水量演变的驱动因素与节水路径[J]. 水利经济, 2023, 41(2): 25-32, 94. |
[Shi Zhen, Lu Shuying, Ji Yingjie, et al. Driving factor of industrial water use evolution and water-saving pathway in China[J]. Journal of Economics of Water Resources, 2023, 41(2): 25-32, 94.] | |
[21] | 孙冬营, 王炎霄, 丁绪辉, 等. 长三角城市生活用水量的时空变化与驱动效应研究[J]. 水利水电技术(中英文), 2023, 54(9): 61-73. |
[Sun Dongying, Wang Yanxiao, Ding Xuhui, et al. Study on the spatial and temporal changes and driving effects of urban domestic water consumption in the Yangtze River Delta[J]. Water Resources and Hydropower Engineering, 2023, 54(9): 61-73.] | |
[22] | 杨雅雪, 杨井, 许玉凤, 等. 基于LMDI方法的新疆生产用水变化分析[J]. 干旱区地理, 2016, 39(1): 67-76. |
[Yang Yaxue, Yang Jing, Xu Yufeng, et al. Industrial water use change in Xinjiang based on LMDI method[J]. Arid Land Geography, 2016, 39(1): 67-76.] | |
[23] | 左其亭, 李佳伟, 马军霞, 等. 新疆水资源时空变化特征及适应性利用战略研究[J]. 水资源保护, 2021, 37(2): 21-27. |
[Zuo Qiting, Li Jiawei, Ma Junxia, et al. Study on spatio-temporal variation characteristics and adaptive utilization strategies of water resources in Xinjiang[J]. Water Resources Protection, 2021, 37(2): 21-27.] | |
[24] | 吴秀兰, 段春锋, 玛依拉·买买提艾力, 等. 基于MCI的新疆近60 a干旱时空特征分析[J]. 干旱区研究, 2022, 39(1): 75-83. |
[Wu Xiulan, Duan Chunfeng, Maimaitiaili Mayila. Analysis of the temporal-spatial variation characteristics of drought in the Xinjiang based on the meteorological drought comprehensive index[J]. Arid Zone Research, 2022, 39(1): 75-83.] | |
[25] | 邓铭江. 新疆水资源及可持续利用[M]. 北京: 中国水利水电出版社, 2005: 12. |
[Deng Mingjiang. Water resources and sustainable use in Xinjiang[M]. Beijing: China Water & Power Press, 2005: 12.] | |
[26] | 何凡, 顾冰, 何国华, 等. 中国用水量变化的驱动效应[J]. 南水北调与水利科技(中英文), 2022, 20(3): 417-428. |
[He Fan, Gu Bing, He Guohua, et al. Driving effect evolution and spatial differentiation of water use change in China[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(3): 417-428.] | |
[27] | 张陈俊, 章恒全, 陈其勇, 等. 中国用水量变化的影响因素分析——基于LMDI方法[J]. 资源科学, 2016, 38(7): 1308-1322. |
[Zhang Chenjun, Zhang Hengquan, Chen Qiyong, et al. Factors influencing water use changes based on LMDI methods[J]. Resources Science, 2016, 38(7): 1308-1322.] | |
[28] | 孙才志, 谢巍, 邹玮. 中国水资源利用效率驱动效应测度及空间驱动类型分析[J]. 地理科学, 2011(10): 1213-1220. |
[Sun Caizhi, Xie Wei, Zou Wei. Measurement of the driving effect of China’s water resource utilization efficiency and analysis of spatial driving types[J]. Scientia Geographica Sinica, 2011(10): 1213-1220.] | |
[29] | 何艳虎, 李深林, 杨洁, 等. 我国不同区域用水结构变化及其驱动因素分析[J]. 水资源与水工程学报, 2016, 27(4): 1-6. |
[He Yanhu, Li Shenlin, Yang Jie, et al. Change of water use structure and its driving factors in different regions of China[J]. Journal of Water Resources & Water Engineering, 2016, 27(4): 1-6.] | |
[30] | 易晶晶, 陈志和. 基于LMDI模型的广东省产业用水驱动力和驱动效应分析[J]. 人民珠江, 2019, 40(8): 39-43. |
[Yi Jingjing, Chen Zhihe. Analysis of driving force and driving effect of industrial water use in Guangdong Province based on LMDI model[J]. Pearl River, 2019, 40(8): 39-43.] | |
[31] | Sun S, Fu G T, Bao C, et al. Identifying hydro-climatic and socioeconomic forces of water scarcity through structural decomposition analysis: A case study of Beijing City[J]. Science of the Total Environment, 2019, 687: 590-600. |
/
〈 | 〉 |