第三次新疆综合科学考察

1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究

  • 李红阳 ,
  • 陈天宇 ,
  • 王圣杰 ,
  • 张明军
展开
  • 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.和田地区气象局,新疆 和田 848000
李红阳(1999-),女,硕士研究生,主要从事寒旱区生态水文过程研究. E-mail: hongyangli2022@163.com
王圣杰(1987-),男,博士,副教授,主要从事同位素水文气候研究. E-mail: geowang@126.com

收稿日期: 2024-02-23

  修回日期: 2024-05-08

  网络出版日期: 2024-09-24

基金资助

国家科技基础资源调查专项(2021xjkk0101);国家自然科学基金项目(42261008)

Spatiotemporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021

  • LI Hongyang ,
  • CHEN Tianyu ,
  • WANG Shengjie ,
  • ZHANG Mingjun
Expand
  • 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Hotan Prefecture Meteorological Bureau, Hotan 848000, Xinjiang, China

Received date: 2024-02-23

  Revised date: 2024-05-08

  Online published: 2024-09-24

摘要

蒸散是陆面水循环的重要环节,在高寒干旱环境中表现更加复杂。新疆昆仑山北坡位于青藏高原北缘,山区实地气象观测匮乏,对潜在蒸散的认识也有待加强。通过Mann-Kendall检验和经验正交函数分析了1979—2021年新疆昆仑山北坡潜在蒸散的时空变化特征,比较了各流域的变化趋势,并且分析了潜在蒸散与其他气象要素的关系。结果表明:(1) 新疆昆仑山北坡年均潜在蒸散为733.5 mm,从塔里木盆地南缘向南呈现出逐渐减小的空间变化趋势。(2) 1979—2021年潜在蒸散总体呈波动上升趋势,线性变化率为8.7 mm·(10a)-1,其中2007年以前呈上升趋势,2007年后有下降趋势。(3) 在喀什噶尔河流域、叶尔羌河流域、和田河流域、克里雅河流域、车尔臣河流域以及库木库里盆地6个流域中,车尔臣河流域年均潜在蒸散最高(810.8 mm),其线性变化率也最大(11.4 mm·(10a)-1),和田河流域和克里雅河流域潜在蒸散的升高趋势相对较小,线性变化率分别为4.9 mm·(10a)-1和5.0 mm·(10a)-1。未来仍应加强新疆昆仑山北坡高海拔区域的水文气象观测,以便明确全球变化背景下的水文不确定性。

本文引用格式

李红阳 , 陈天宇 , 王圣杰 , 张明军 . 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024 , 47(9) : 1443 -1450 . DOI: 10.12118/j.issn.1000-6060.2024.107

Abstract

Evapotranspiration is an important component of the terrestrial water cycle, and is complex in cold and arid environments. The northern slope of the Kunlun Mountains in Xinjiang of China, situated on the northern edge of the Qinghai-Xizang Plateau, lacks a comprehensive understanding of potential evapotranspiration due to the absence of long-term meteorological observations. This study examined the spatiotemporal variations of potential evapotranspiration from 1979 to 2021, especially from a sub-basin perspective, and analyzed the relationship between potential evapotranspiration and other meteorological parameters using the Mann-Kendall test and empirical orthogonal function. The results indicate that: (1) The long-term mean of potential evapotranspiration is 733.5 mm per year, exhibiting a spatial variation trend that decreases gradually from the southern edge of the Tarim Basin towards the south. (2) From 1979 to 2021, the mean potential evapotranspiration has increased by 8.7 mm·(10a)-1. Before 2007, there was an increasing trend, although a decreasing trend can be seen after 2007. (3) Among the six sub-basins, i.e., the Kaxgar River Basin, the Yarkant River Basin, the Hotan River Basin, the Keriya River Basin, the Qarqan River Basin and the Kumkol Basin, the Qarqan River Basin has the highest annual mean potential evapotranspiration of 810.8 mm and the highest linear trend of 11.4 mm·(10a)-1. In contrast, the linear trends in the Hotan River Basin (4.9 mm·(10a)-1) and the Keriya River Basin (5.0 mm·(10a)-1) are lower. In the future, efforts should be made to enhance hydro-meteorological observations in high-altitude regions of the northern slope of the Kunlun Mountains in Xinjiang to understand hydrological uncertainties under the background of global change.

参考文献

[1] Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954.
[2] Zhao L L, Xia J, Xu C Y, et al. Evapotranspiration estimation methods in hydrological models[J]. Journal of Geographical Sciences, 2013, 23(2): 359-369.
[3] Adeyeri O E, Ishola K A. Variability and trends of actual evapotranspiration over west Africa: The role of environmental drivers[J]. Agricultural and Forest Meteorology, 2021, 308: 108574, doi: 10.1016/j.agrformet.2021.108574.
[4] Voigt A, Shaw T A. Circulation response to warming shaped by radiative changes of clouds and water vapour[J]. Nature Geoscience, 2015, 8(2): 102-106.
[5] Pascolini-Campbell M, Reager J T, Chandanpurkar H A, et al. A 10% increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2021, 593(7860): 543-547.
[6] Xu S Q, Yu Z B, Yang C G, et al. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin[J]. Agricultural and Forest Meteorology, 2018, 263: 118-129.
[7] Zhao Y, Chen Y N, Wu C Y, et al. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China[J]. Journal of Hydrology, 2023, 626: 130222, doi: 10.1016/j.jhydrol.2023.130222.
[8] Milly P C D, Dunne K A. Potential evapotranspiration and continental drying[J]. Nature Climate Change, 2016, 6(10): 946-949.
[9] Valipour M. Analysis of potential evapotranspiration using limited weather data[J]. Applied Water Science, 2017, 7(1): 187-197.
[10] 张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
  [Zhang Ronghua, Du Junping, Sun Rui. Review of estimation and validation of regional evapotranspiration based on remote sensing[J]. Advance in Earth Sciences, 2012, 27(12): 1295-1307.]
[11] 马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202.
  [Ma Yali, Niu Zuirong, Sun Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in Hexi Corridor[J]. Arid Land Geography, 2024, 47(2): 192-202.]
[12] Gu L L, Hu Z Y, Yao J M, et al. Actual and reference evapotranspiration in a cornfield in the Zhangye oasis, northwestern China[J]. Water, 2017, 9(7): 499, doi: 10.3390/w9070499.
[13] Hu J H, Che T, Sun H R, et al. Numerical modeling and simulation of thermo-hydrologic processes in frozen soils on the Qinghai-Tibet Plateau[J]. Journal of Hydrology: Regional Studies, 2022, 40: 101050, doi: 10.1016/j.ejrh.2022.101050.
[14] Huang Q, Long D, Du M D, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211: 112-128.
[15] Krause P, Biskop S, Helmschrot J, et al. Hydrological system analysis and modelling of the Nam Co Basin in Tibet[J]. Advances in Geosciences, 2010, 27: 29-36.
[16] Ding Y J, Zhang S Q, Zhao L, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4): 245-253.
[17] Liu Y, Chen H O, Zhang G Q, et al. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau[J]. Science Bulletin, 2019, 64(20): 1486-1489.
[18] Chen S B, Liu Y F, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961—2000[J]. Climatic Change, 2006, 76(3-4): 291-319.
[19] 田露, 郭伟, 倪向南, 等. 青海湖地区潜在蒸散发变化特征及影响因子分析[J]. 地球环境学报, 2023, 14(3): 328-338.
  [Tian Lu, Guo Wei, Ni Xiangnan, et al. Analysis of potential evapotranspiration trends and its factors in Qinghai Lake area[J]. Journal of Earth Environment, 2023, 14(3): 328-338.]
[20] Wen X H, Pan W Q, Sun X G, et al. Study on the variation trend of potential evapotranspiration in the Three-River Headwaters region in China over the past 20 years[J]. Frontiers in Earth Science, 2020, 8: 582742, doi: 10.3389/feart.2020.582742.
[21] Chen A F, Chen D L, Azorin-Molina C. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets[J]. International Journal of Climatology, 2018, 38(11): 4314-4334.
[22] Liu J, Shangguan D H, Liu S Y, et al. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981—2015[J]. Atmospheric Research, 2019, 230: 104634, doi: 10.1016/j.atmosres.2019.104634.
[23] 郑度. 喀喇昆仑山-昆仑山地区自然地理[M]. 北京: 科学出版社, 1999.
  [Zheng Du. Physical Geography of the Karakorum-Kunlun Mountains[M]. Beijing: Science Press, 1999.]
[24] Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[25] 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015, 33(2): 157-165.
  [Li Chengxiu, Yang Taibao, Tian Hongzhen. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976—2010[J]. Journal of Mountain Science, 2015, 33(2): 157-165.]
[26] 李江风. 新疆气候[M]. 北京: 气象出版社, 1991.
  [Li Jiangfeng. Xinjing Climate[M]. Beijing: China Meteorological Press, 1991.]
[27] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987.
  [Zhang Jiabao, Deng Zifeng. Introduction to precipitation in Xinjiang[M]. Beijing: China Meteorological Press, 1987.]
[28] Liu Z Q, Jiang L P, Shi C X, et al. CRA-40/Atmosphere: The first-generation Chinese atmospheric reanalysis (1979—2018): System description and performance evaluation[J]. Journal of Meteorological Research, 2023, 37(1): 1-19.
[29] Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1): 109, doi: 10.1038/s41597-020-0453-3.
[30] Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011—2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194.
[31] 彭守璋. 中国1 km逐月潜在蒸散发数据集(1901—2022)[DB/OL]. [2024-02-23]. https://doi.org/10.11866/db.loess.2021.001.
  [Peng Shouzhang. 1 km monthly potential evapotranspiration dataset in China (1901—2022)[DB/OL]. [2024-02-23]. https://doi.org/10.11866/db.loess.2021.001.]
[32] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[M]. Rome: Food and Agriculture Organization of the United Nations, 1998.
[33] 祝昌汉. 再论总辐射的气候学计算方法(二)[J]. 南京气象学院学报, 1982, 5(2): 196-206.
  [Zhu Changhan. A further discussion on the climatological calculation method of total radiation (Ⅱ)[J]. Journal of Nanjing Institute of Meteorology, 1982, 5(2): 196-206.]
[34] 焦丹丹, 吉喜斌, 金博文, 等. 干旱气候条件下多种潜在蒸发量估算方法对比研究[J]. 高原气象, 2018, 37(4): 1002-1016.
  [Jiao Dandan, Ji Xibin, Jin Bowen, et al. Comparison of different methods for estimating potential evaporation in an arid environment[J]. Plateau Meteorology, 2018, 37(4): 1002-1016.]
[35] Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196.
[36] Lorenz E N. Statistical forecasting program: Empirical orthogonal functions and statistical weather prediction[J]. Scientific Reports, 1956, 409: 997-999.
[37] Huntington T G. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 2006, 319(1-4): 83-95.
[38] 卢冬燕, 朱秀芳, 刘婷婷, 等. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237.
  [Lu Dongyan, Zhu Xiufang, Liu Tingting, et al. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario[J]. Arid Land Geography, 2023, 46(8): 1227-1237.]
[39] Qin D Y, Lü J Y, Liu J H, et al. Theories and calculation methods for regional objective ET[J]. Chinese Science Bulletin, 2009, 54(1): 150-157.
[40] Yin Y H, Wu S H, Chen G, et al. Attribution analyses of potential evapotranspiration changes in China since the 1960s[J]. Theoretical and Applied Climatology, 2010, 101: 19-28.
文章导航

/