第三次新疆综合科学考察

伊犁河流域近30 a洪水灾害时空分布及孕灾环境特征研究

  • 古丽扎尔·莫明 ,
  • 杨莲梅 ,
  • 刘艳 ,
  • 李新国
展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830000
    2.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
古丽扎尔·莫明(1998-),女,硕士研究生,主要从事空间信息分析与应用研究. E-mail: gz2233711745@163.com
杨莲梅(1969-),女,博士,研究员,主要从事天气气候和云降水物理研究. E-mail: yanglm@idm.cn

收稿日期: 2023-08-05

  修回日期: 2023-10-07

  网络出版日期: 2024-09-02

基金资助

第三次新疆综合科学考察项目“伊犁河流域自然灾害调查评估”之课题(2022xjkk0600);“伊犁河流域暴雨洪水灾害调查评估”(2022xjkk0601)

Spatial and temporal distribution of flood disasters and characteristics of disaster-prone environment in Ili River Basin in recent 30 years

  • Gulzar MOMIN ,
  • YANG Lianmei ,
  • LIU Yan ,
  • LI Xinguo
Expand
  • 1. College of Geography and Tourism, Xinjiang Normal University, Urumqi 830000, Xinjiang, China
    2. Urumqi Desert Meteorology Institute, China Meteorological Administration, Urumqi 830002, Xinjiang, China

Received date: 2023-08-05

  Revised date: 2023-10-07

  Online published: 2024-09-02

摘要

基于1990—2022年伊犁河流域洪水灾情数据集,结合高程、归一化植被指数等孕灾环境因子,研究伊犁河流域洪水灾害时空分布及孕灾环境特征,并分析洪水灾害发生规律和孕灾环境之间的联系。结果表明:(1) 研究区洪水灾害可分为3种:暴雨洪水、融雪洪水和混合洪水(暴雨加融雪造成洪水),其中,暴雨洪水灾害最多(占80.0%)、融雪洪水灾害最少(占3.4%);洪水灾害呈流域北部多于南部、东段多于西段的空间分布,尼勒克县最多、霍尔果斯市最少。(2) 近30 a来洪水灾害频次呈年际和年代际增多趋势,洪水灾害年均约11.6次·a-1,2010年最多(43次),2000—2011年最多(149次)。洪水灾害在夏季最多,春季次之,秋季最少,6月最多(年均3.3次·a-1),10月最少(年均0.06次·a-1),其中暴雨洪水灾害夏季最多,年均9.3次·a-1,6月最多(110次),10月最少(2次),混合洪水灾害春多夏少,3月最多(36次),7月最少(8次),年均1.9次·a-1,融雪洪水灾害3月最多(12次),只发生于春季,年均0.4次·a-1。(3) 孕灾环境敏感性等级综合分布显示,灾害发生过程中,各孕灾因子共同起作用,影响洪水灾害的空间分布和强度。尼勒克县、特克斯县、新源县、昭苏县和霍尔果斯市境内的极高敏感区域分布较多。结合洪水灾害时空分布和孕灾环境等级综合分布可知,洪水灾害多发生在极高敏感区和高敏感区分布较多的流域东段和北部区域。

本文引用格式

古丽扎尔·莫明 , 杨莲梅 , 刘艳 , 李新国 . 伊犁河流域近30 a洪水灾害时空分布及孕灾环境特征研究[J]. 干旱区地理, 2024 , 47(8) : 1314 -1326 . DOI: 10.12118/j.issn.1000-6060.2023.404

Abstract

Based on the flood disaster data set of the Ili River Basin from 1990 to 2022, this study combined with disaster-prone environment factors, such as elevation and normalized vegetation index, to examine the spatial and temporal distribution of flood disasters and the characteristics of disaster-prone environment in the Ili River Basin. This study analyzes the relationship between the occurrence rule of flood disasters and the disaster-prone environment. The results reveal the following: (1) Flood disasters in the study area can be categorized into three types: rainstorm, snowmelt, and mixed floods (caused by rainstorm and snowmelt floods), with rainstorm flood being the most prevalent (80.0%) and snowmelt flood the least (3.4%). The spatial distribution of flood disasters is greater in the north than in the south, greater in the east than in the west, with Nilke County experiencing the most and Khorgas City the least. (2) Over the past 30 years, the frequency of flood disasters has shown a substantial interannual and interdecadal increasing trend, with an average annual occurrence of about 11.6·a-1. The highest occurrence was in 2010 (43), and the highest period was from 2000 to 2011 (149). Flood disasters were most frequent in summer, followed by spring, and least frequent in autumn. They were most frequent in June (annual mean 3.3 times·a-1) and least frequent in October (annual mean 0.06 times·a-1). Rainstorm flood disasters were most frequent in summer (annual mean 9.3 times·a-1), most frequent in June (110 times), and least frequent in October (2 times). Mixed flood disasters were more frequent in spring and less frequent in summer, with the most in March (36 times) and at the least in July (8 times), with an average annual rate of 1.9 times·a-1; snowmelt flood was most frequent in March (12 times), only occurring in spring, with an average annual rate of 0.4 times·a-1. (3) The comprehensive distribution of disaster-prone environment sensitivity levels shows that all disaster-prone factors work together to affect the spatial distribution and intensity of flood disasters. More extremely sensitive areas exist in Nilka, Tekes, Xinyuan, Zhaosu Counties and Khorgas City. Based on the spatial and temporal distribution of flood disasters and the comprehensive distribution of the disaster-prone environment, flood disasters mostly occur in the eastern and northern parts of the basin, where the extremely and highly sensitive areas are distributed.

参考文献

[1] 邱海军, 曹明明, 胡胜. 1950—2010年中国洪涝灾情的频率规模关系[J]. 自然灾害学报, 2013, 22(4): 114-119.
  [Qiu Haijun, Cao Mingming, Hu Sheng. The relationship between the frequency and the scale of flood situation in China from 1950 to 2010[J]. Journal of Natural Disaster, 2013, 22(4): 114-119.]
[2] 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162.
  [Hu Pan, Chen Bo, Shi Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China[J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162.]
[3] 王静, 李娜, 王艳艳, 等. 洪水灾害影响人口和经济风险评估区划方法研究[J]. 中国水利, 2023(8): 16-19.
  [Wang Jing, Li Na, Wang Yanyan, et al. Study on flood affected population and economic risk assessment and zoning method[J]. China Water Reseources, 2023(8): 16-19.]
[4] 尹卫霞, 余瀚, 崔淑娟, 等. 暴雨洪水灾害人口损失评估方法研究进展[J]. 地理科学进展, 2016, 35(2): 148-158.
  [Yin Weixia, Yu Han, Cui Shujuan, et al. Review on methods for estimating the loss of life induced by heavy rain and floods[J]. Progress in Geography, 2016, 35(2): 148-158.]
[5] 王妮, 崔彩霞, 刘艳. 新疆暴雨洪涝灾害损失的时空特征及其影响因素[J]. 干旱区研究, 2020, 37(2): 325-330.
  [Wang Ni, Cui Caixia, Liu Yan. Temporal-spatial characteristics and the influencing factors of rainstorm-flood disasters in Xinjiang[J]. Arid Zone Research, 2020, 37(2): 325-330.]
[6] 刘艳, 卢新玉, 郑奕, 等. 新疆与中亚融雪型洪水监测、预警调研及对策建议[J]. 气象科技进展, 2022, 12(2): 21-29.
  [Liu Yan, Lu Xinyu, Zheng Yi, et al. Investigation and countermeasures on monitoring & early-warning of snowmelt flood in Xinjiang and Central Asia[J]. Advances in Meteorological Science and Technology, 2022, 12(2): 21-29.]
[7] 何冰晶, 刘耀龙, 张华明, 等. 中国灾害风险与贫困互相关效应的理论分析与实证研究[J]. 干旱区地理, 2022, 45(5): 1649-1658.
  [He Bingjing, Liu Yaolong, Zhang Huaming, et al. Theoretical analysis and empirical study on the nexus of disaster risk and poverty in China[J]. Arid Land Geography, 2022, 45(5): 1649-1658.]
[8] 陈颖, 马禹. 新疆不同等级暴雨洪涝灾害的时空变化特征[J]. 干旱区地理, 2021, 44(6): 1515-1524.
  [Chen Ying, Ma Yu. Spatial and temporal characteristics of flood and rainstorm disaster in Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1515-1524.]
[9] 王伏村, 许东蓓, 张德玉, 等. 西北地区东部一次大暴雨天气过程的诊断分析[J]. 干旱区研究, 2014, 31(3): 452-462.
  [Wang Fucun, Xu Dongbei, Zhang Deyu, et al. Diagnostic analysis on a rainstorm in the eastern part of northwest China[J]. Arid Zone Research, 2014, 31(3): 452-462.]
[10] 余其鹰, 胡彩虹, 白云岗, 等. 新疆洪水预报预警中融雪径流模型应用进展[J]. 干旱区地理, 2023, 46(12): 1951-1962.
  [Yu Qiying, Hu Caihong, Bai Yungang, et al. Application of snowmelt runoff model in flood forecasting and warning in Xinjiang[J]. Arid Land Geography, 2023, 46(12): 1951-1962.]
[11] 张国威, 何文勤, 商思臣. 我国干旱区洪水灾害基本特征──以新疆为例[J]. 干旱区地理, 1998, 21(1): 40-48.
  [Zhang Guowei, He Wenqin, Shang Sichen. Basic features of the flood disasters in arid land of China: Taking Xinjiang as example[J]. Arid Land Geography, 1998, 21(1): 40-48.]
[12] 王小亚, 马诺, 李海花, 等. 南疆暴雨洪涝灾害风险区划[J]. 沙漠与绿洲气象, 2022, 16(4): 72-78.
  [Wang Xiaoya, Ma Nuo, Li Haihua, et al. Risk zoning of rainstorm and flood disasters in southern Xinjiang[J]. Desert and Oasis Meteorology, 2022, 16(4): 72-78.]
[13] 周刚, 崔曼仪, 李哲, 等. 新疆春季融雪洪水危险性动态评价研究[J]. 干旱区研究, 2021, 38(4): 950-960.
  [Zhou Gang, Cui Manyi, Li Zhe, et al. Dynamic evaluation of the risk of the spring snowmelt flood in Xinjiang[J]. Arid Zone Research, 2021, 38(4): 950-960.]
[14] 方建, 李梦婕, 王静爱, 等. 全球暴雨洪水灾害风险评估与制图[J]. 自然灾害学报, 2015, 24(1): 1-8.
  [Fang Jian, Li Mengjie, Wang Jing’ai, et al. Assessment and mapping of global fluvial flood risk[J]. Desert and Oasis Meteorology, 2015, 24(1): 1-8.]
[15] 张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350.
  [Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt (ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350.]
[16] 郑艳丽. 伊犁河谷察布查尔县洪水发生特征分析[J]. 地下水, 2020, 42(4): 184-185.
  [Zheng Yanli. Analysis of flood occurrence characteristics in Qapqal County of Yili Valley[J]. Ground Water, 2020, 42(4): 184-185.]
[17] 罗湘. 伊宁县暴雨洪水发生特征及坡面减流减沙对策研究[D]. 乌鲁木齐: 新疆农业大学, 2019.
  [Luo Xiang. Characteristics of rain storm flood and countermeasures for reduction hill slope runoff and sediment in Yining County[D]. Urumqi: Xinjiang Agricultural University, 2019.]
[18] 杨涛, 张晋茹, 杨莲梅, 等. 近60年新疆主要气象灾害变化特征及其防灾减灾对策建议[J]. 气象科技进展, 2022, 12(6): 129-134.
  [Yang Tao, Zhang Jinru, Yang Lianmei, et al. The change characteristics of major meteorological disasters in Xinjiang in recent 60 years and the countermeasures for disaster prevention and mitigation[J]. Advances in Meteorological Science and Technology, 2022, 12(6): 129-134.]
[19] 杨青, 姚俊强, 赵勇, 等. 伊犁河流域水汽含量时空变化及其和降水量的关系[J]. 中国沙漠, 2013, 33(4): 1174-1183.
  [Yang Qing, Yao Junqiang, Zhao Yong, et al. Spatial-temproral variation of water vapor and its relationship with the preciptation in the Ili River Basin[J]. Journal of Desert Research, 2013, 33(4): 1174-1183.]
[20] 王颖慧, 丁建丽, 李晓航. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118.
  [Wang Yinhui, Ding Jianli, Li Xiaohang. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118.]
[21] 袁证光, 汪磊. 基于EM-AHP-TOPSIS的喀斯特城市土地承载力评价——以贵阳市为例[J/OL]. 自然资源情报, 1-7[2023-06-25]. http://kns.cnki.net/kcms/detail/10.1798.N.20230619.1417.008.html.
  [Yuan Zhengguang, Wang Lei. Evaluation of land resources carrying capacity of karst cities based on EM-AHP-TOPSIS model: A case study of Guiyang[J/OL]. Natural Resources Information, 1-7[2023-06-25]. http://kns.cnki.net/kcms/detail/10.1798.N.20230619.1417.008.html.]
[22] 郭佳, 赵之星, 刘志奇, 等. 结合信息量与AHP模型的阳泉市矿区地质灾害风险评价[J]. 测绘通报, 2022(11): 101-105.
  [Guo Jia, Zhao Zhixing, Liu Zhiqi, et al. Risk assessment of geological disaster based on information value and AHP model in mining area of Yangquan City[J]. Surveying and Mapping Bulletin, 2022(11): 101-105.]
[23] 王秀琴, 王旭. 1980—2019年新疆南部不同强度暴雨洪水灾害的空间分布和时间变化特征[J]. 冰川冻土, 2021, 43(6): 1818-1828.
  [Wang Xiuqin, Wang Xu. Spatial distribution and temporal variation characteristics of rainstorm flood disasters with different intensities in southern Xinjiang from 1980 to 2019[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1818-1828.]
[24] 刘仪航, 韩剑桥, 谢梦霞, 等. 基于GIS与AHP集成的黄土高原洪水灾害风险评估[J]. 水土保持研究, 2023, 30(2): 129-134.
  [Liu Yihang, Han Jianqiao, Xie Mengyao, et al. Risk assessment of flood disaster on the Loess Plateau based on integration of GIS and AHP[J]. Research of Soil and Water Conservation, 2023, 30(2): 129-134.]
[25] 张紫昭, 张天栋, 于喜坤, 等. 新疆崩滑流地质灾害孕灾环境分区及其形成机制[J]. 工程地质学报, 2023, 31(4): 1129-1144.
  [Zhang Zizhao, Zhang Tiandong, Yu Xikun, et al. Zonation of disaster environments of collapse, landslide and debris flow geologic hazards and their formation mechanisms in Xinjiang[J]. Journal of Engineering Geology, 2023, 31(4): 1129-1144.]
[26] 赵伟, 周娟, 陈科技, 等. 浙江电网台风风灾的孕灾环境因子敏感性分析[J]. 灾害学, 2022, 37(3): 118-121.
  [Zhao Wei, Zhou Juan, Chen Keji, et al. Sensitivity analysis on hazard-pregnant environmental factors for wind disasters caused by typhoon in Zhejiang power grid[J]. Journal of Catastrophology, 2022, 37(3): 118-121.]
[27] 刘艳, 何清, 戴晓爱, 等. 新疆铁路沿线主要气象灾害风险区划及减灾对策探讨[J]. 自然灾害学报, 2016, 25(3): 48-57.
  [Liu Yan, He Qing, Dai Xiaoai, et al. Risk mapping of main meteorological disasters and disaster mitigation strategies for Xinjiang railway lines[J]. Journal of Natural Disasters, 2016, 25(3): 48-57.]
[28] 邹凤钗, 陶小郎, 吕东, 等. 万山区地质灾害时空分布规律和孕灾环境研究[J]. 贵州科学, 2022, 40(5): 51-56, 86.
  [Zou Fengchai, Tao Xiaolang, Lü Dong, et al. Spatial and tempoal distribution and hazard-formative environment of geologic hazards in Wanshan District[J]. Guizhou Science, 2022, 40(5): 51-56, 86.]
[29] 刘艳, 阮慧华, 何清. 新疆拟建铁路沿线雪风灾分区和致灾性分析[J]. 灾害学, 2012, 27(2): 54-57.
  [Liu Yan, Ruan Huihua, He Qing. Snow and wind disaster zoning and catastrophability analysis of the planned railway in Xinjiang[J]. Journal of Catastrophology, 2012, 27(2): 54-57.]
[30] 周仿荣, 潘浩, 马仪, 等. 考虑地形地貌影响的云南省落雷孕灾环境敏感性分析[J]. 电网技术, 2022, 46(7): 2834-2841.
  [Zhou Fangrong, Pan Hao, Ma Yi, et al. Sensitivity analysis on hazard-pregnant environment of lightning activity in Yunnan Province considering effects of topography[J]. Power System Technology, 2022, 46(7): 2834-2841.]
[31] 张晓东, 赵银鑫, 马风华, 等. 基于遥感数据的银川市城市公园对城市热环境降温效应分析[J]. 水土保持通报, 2021, 41(5): 338-347.
  [Zhang Xiaodong, Zhao Yinxin, Ma Fenghua, et al. Analysis on cooling effect of urban parks on urban thermal environment in Yinchuan City based on remote sensing[J]. Power System Technology, 2021, 41(5): 338-347.]
[32] 邹桃红, 陈鹏, 刘家福, 等. 不同土地利用情景下四平市生态系统碳储量时空演变[J]. 中国环境科学, 2023, 43(10): 5508-5518.
  [Zou Taohong, Chen Peng, Liu Jiafu, et al. Spatio-temporal dynamics of territorial ecosystem carbon storage under different land use scenarios in Siping City[J]. China Environmental Science, 2023, 43(10): 5508-5518.]
[33] 刘鑫, 赵鲁强, 刘娜, 等. 伊犁河流域春季融雪型洪水危险性评价与区划[J]. 气象科技进展, 2016, 6(6): 35-41.
  [Liu Xin, Zhao Luqiang, Liu Na, et al. Risk evaluation of the spring snowmelt flood in Ili River Basin and its mapping[J]. Advances in Meteorological Science and Technology, 2016, 6(6): 35-41.]
[34] 熊平生, 刘亮, 郝丽. 洞庭湖区洪涝灾害成因及其孕灾环境的变化研究[J]. 安徽农学通报, 2021, 27(3): 141-143.
  [Xiong Pingsheng, Liu Liang, Hao Li. Research on reasons of the flood disaster in Dongting Lake area and its environment change of flood disaster[J]. Anhui Agricultural Science Bulletin, 2021, 27(3): 141-143.]
[35] 殷洁, 裴志远, 陈曦炜, 等. 基于GIS的武陵山区洪水灾害风险评估[J]. 农业工程学报, 2013, 29(24): 110-117.
  [Yin Jie, Pei Zhiyuan, Chen Xiwei, et al. GIS-based flood disaster risk assessment in Wuling Mountain region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 110-117.]
文章导航

/