第三次新疆综合科学考察

萨吾尔山冰川现状及演化过程

  • 牟建新 ,
  • 李忠勤 ,
  • 王璞玉 ,
  • 梁鹏斌 ,
  • 王炎强 ,
  • 白昌彬 ,
  • 王芳龙
展开
  • 1.中国科学院西北生态环境资源研究院,冰冻圈科学与冻土工程重点实验室/阿尔泰山冰冻圈科学与可持续发展综合观测研究站,甘肃 兰州 730000
    2.青海理工学院生态与环境科学学院,青海 西宁 810000
    3.青海省高原气候变化及其生态环境效应重点实验室,青海 西宁 810000
    4.山西农业大学资源环境学院,山西 太谷 030801
    5.南宁师范大学,广西 南宁 530001
牟建新(1994-),男,工程师,主要从事冰川观测与遥感研究. E-mail: mujianxin@lzb.ac.cn
李忠勤(1962-),男,研究员,主要从事冰川学研究. E-mail: lizq@lzb.ac.cn

收稿日期: 2024-02-23

  修回日期: 2024-05-23

  网络出版日期: 2024-09-02

基金资助

第三次新疆综合科学考察项目课题(2022xjkk07012);第三次新疆综合科学考察项目课题(2022xjkk0101);国家自然科学基金(42301166);国家自然科学基金(42371148);甘肃省自然科学基金(23JRRA658)

Glaciers in Saur Mountains: Current situation and evolutionary process

  • MU Jianxin ,
  • LI Zhongqin ,
  • WANG Puyu ,
  • LIANG Pengbin ,
  • WANG Yanqiang ,
  • BAI Changbin ,
  • WANG Fanglong
Expand
  • 1. Key Laboratory of Cryospheric Science and Frozen Soil Engineering/Altai Observation and Research Station of Cryospheric Science and Sustainable Development, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. Faculty of Ecology and Environmental Sciences, Qinghai Institute of Technology, Xining 810000, Qinghai, China
    3. Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects, Xining 810000, Qinghai, China
    4. College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    5. Nanning Normal University, Nanning 530001, Guangxi, China

Received date: 2024-02-23

  Revised date: 2024-05-23

  Online published: 2024-09-02

摘要

萨吾尔山是中国西部14座冰川分布的山系之一,横跨中国和哈萨克斯坦两国,尽管冰川规模不大,但因二元政治主体割裂了科学研究的完整性,同时萨吾尔山冰川水资源对于新疆阿勒泰地区吉木乃县可持续发展具有重要意义,为此结合航摄地形图、Landsat及Sentinel卫星遥感影像,并参考已有冰川编目和Google Earth高分辨率历史图像等数据资料,在野外台站现场观测验证基础上对萨吾尔山冰川当前现状和过去30多年间的变化进行了详细研究。结果表明:(1) 截止2022年,萨吾尔山共分布冰川31条,总面积11.47 km2,新疆吉木乃县境内的木斯岛冰川为最大规模冰川,面积2.95 km2,其余90%的冰川其面积不足1 km2。(2) 过去30多年来,萨吾尔山冰川变化的总体趋势是冰川分裂、面积减小和末端后退持续增加。冰川数量从12条分裂成31条,1989—2022年冰川面积减少8.11 km2,退缩率达41.42%,冰川末端退缩11.30 m。气温升高、冰川反照率降低和冰川破碎程度加大是引起萨吾尔山冰川退缩的主要原因。(3) 相较于我国其他13座高大山系,萨吾尔山在过去半个多世纪中冰川面积相对退缩幅度最大。未来在全球气候变暖背景下萨吾尔山冰川极大可能会基本消融殆尽,这对本就干旱贫水的吉木乃县可持续发展将产生重要影响,需提早统筹谋划以应对未来的水资源危机。

本文引用格式

牟建新 , 李忠勤 , 王璞玉 , 梁鹏斌 , 王炎强 , 白昌彬 , 王芳龙 . 萨吾尔山冰川现状及演化过程[J]. 干旱区地理, 2024 , 47(8) : 1277 -1291 . DOI: 10.12118/j.issn.1000-6060.2024.112

Abstract

The Saur Mountains, one of the 14 mountain ranges with glaciers in western China, span across China and Kazakhstan. Although the glaciers are relatively small, scientific research is challenged by the division between two political entities. The water resources from the Saur Mountains’ glaciers are crucial for the development of Jeminay County, Xinjiang, China. This study integrates aerial topographic maps, Landsat and Sentinel satellite remote sensing images, existing glacier inventories, Google Earth high-resolution historical images, and other data. Remote sensing observations were verified on-site, and a detailed study on the current status and historical evolution of the Saur Mountains’ glaciers over the past 30 years was conducted. The results indicate that: (1) As of 2022, there are 31 glaciers in the Saur Mountains, covering a total area of 11.47 km2. The Muz Taw glacier, the largest in the range, is located in Jeminay County with an area of 2.95 km2. The remaining 90% of glaciers are each less than 1 km2, but collectively account for 54.55% of the total glacier area. The latitude height and lower altitude limit of glacier distribution in the Saur Mountains are second only to those in the Altay Mountains, making the Saur Mountains a typical high-latitude, low-altitude glacier distribution region in China. (2) Over the past 30 years, the glaciers in the Saur Mountains have experienced increased splitting, area shrinkage, and terminal retreat. The number of glaciers increased from 12 to 31, while the total glacier area decreased by 8.11 km2, a retreat rate of 41.42%. During the same period, the length of each glacier retreated by 373 m, with an average annual retreat of 11.30 m. Rising temperatures, reduced glacier albedo, and increased glacier fragmentation are the primary reasons for this retreat. (3) Compared to the other 13 mountain ranges in western China, the Saur Mountains have experienced the largest relative retreat in glacier area over the past half-century. With global warming, the glaciers in the Saur Mountains are likely to completely melt, significantly impacting the sustainable development of Jeminay County, which is already dry and water-poor. Early planning is essential to address the impending water resource crisis in Jeminay County.

参考文献

[1] IPCC. Climate change 2021:The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
[2] Bojinski S, Verstraete M, Peterson T C, et al. The concept of essential climate variables in support of climate research, applications, and policy[J]. Bulletin of the American Meteorological Society, 2014, 95(9): 1431-1443.
[3] 牟建新, 李忠勤, 张慧, 等. 全球冰川面积现状及近期变化——基于2017年发布的Randolph冰川编目[J]. 冰川冻土, 2018, 40(2): 238-248.
  [Mu Jianxin, Li Zhongqin, Zhang Hui, et al. The global glacierized area: Current situation and recent change, based on the Randolph Glacier Inventory (RGI 6.0) published in 2017[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 238-248.]
[4] 马丽娟, 效存德, 康世昌. 全球主要山地气候变化特征和异同——IPCC AR6 WGI报告和SROCC综合解读[J]. 气候变化研究进展, 2022, 18(5): 605-621.
  [Ma Lijuan, Xiao Cunde, Kang Shichang. Characteristics, and similarities and differences of climate change in major high mountains in the world: Comprehensive interpretation of IPCC AR6 WGI report and SROCC[J]. Advances in Climate Change Research, 2022, 18(5): 605-621.]
[5] Pritchard H D. Asia’s glaciers are a regionally important buffer against drought[J]. Nature, 2017, 545(7653): 169-174.
[6] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
  [Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.]
[7] 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232.
  [Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232.]
[8] 王宗太. 中国各山脉的冰川最新统计及其分布特征[J]. 干旱区地理, 1988, 11(3): 8-14.
  [Wang Zongtei. New statistical figures and distribution feature of glaciers on the various mountains in China[J]. Arid Land Geography, 1988, 11(3): 8-14.]
[9] Shi Y F, Liu S Y, Ye B S, et al. Concise glacier inventory of China[M]. Shanghai: Shanghai Popular Science Press, 2008.
[10] 怀保娟, 李忠勤, 王飞腾, 等. 1959—2013年中国境内萨吾尔山冰川变化特征[J]. 冰川冻土, 2015, 37(5): 1141-1149.
  [Huai Baojuan, Li Zhongqin, Wang Feiteng, et al. Variation of glaciers in the Sawuer Mountain within Chinese territory during 1959—2013[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1141-1149.]
[11] Bai C B, Wang F T, Bi Y Q, et al. Increased mass loss of glaciers in the Sawir Mountains of Central Asia between 1959 and 2021[J]. Remote Sensing, 2022, 14(21): 5406, doi: 10.3390/rs14215406.
[12] 王炎强, 赵军, 李忠勤, 等. 1977—2017年萨吾尔山冰川变化及其对气候变化的响应[J]. 自然资源学报, 2019, 34(4): 802-814.
  [Wang Yanqiang, Zhao Jun, Li Zhongqin, et al. Glacier changes in the Sawuer Mountain during 1977—2017 and their response to climate change[J]. Journal of Natural Resources, 2019, 34(4): 802-814.]
[13] 尹立东. 萨吾尔山地植被概况[J]. 植物生态学与地植物学学报, 1986, 10(4): 316-322.
  [Yin Lidong. Vegetation of the Sawur Mountain[J]. Chinese Journal of Plant Ecology, 1986, 10(4): 316-322.]
[14] Le Bris R, Paul F, Frey H, et al. A new satellite-derived glacier inventory for western Alaska[J]. Annals of Glaciology, 2011, 52(59): 135-143.
[15] Bolch T, Menounos B, Wheate R. Landsat-based inventory of glaciers in western Canada, 1985—2005[J]. Remote Sensing of Environment, 2010, 114(1): 127-137.
[16] Winsvold S H, Andreassen L M, Kienholz C. Glacier area and length changes in Norway from repeat inventories[J]. The Cryosphere, 2014, 8(5): 1885-1903.
[17] Paul F, Rastner P, Azzoni R S, et al. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2[J]. Earth System Science Data, 2020, 12(3): 1805-1821.
[18] 张慧, 李忠勤, 牟建新, 等. 近50年新疆天山奎屯河流域冰川变化及其对水资源的影响[J]. 地理科学, 2017, 37(11): 1771-1777.
  [Zhang Hui, Li Zhongqin, Mu Jianxin, et al. Impact of the glacier change on water resources in the Kuytun River Basin, Tianshan Mountains during recent 50 years[J]. Scientia Geographica Sinica, 2017, 37(11): 1771-1777.]
[19] 姚晓军, 刘时银, 朱钰, 等. 基于GIS的冰川中流线自动提取方法设计与实现[J]. 冰川冻土, 2015, 37(6): 1563-1570.
  [Yao Xiaojun, Liu Shiyin, Zhu Yu, et al. Design and implementation of an automatic method for deriving glacier centerlines based on GIS[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1563-1570.]
[20] 中国气象局国家气候中心. 中国气候变化蓝皮书(2023)[M]. 北京: 科学出版社, 2023.
  [National Climate Centre of China Meteorological Administration. Blue book on climate change in China (2023)[M]. Beijing: Science Press, 2023.]
[21] 李忠勤. 山地冰川物质平衡和动力过程模拟[M]. 北京: 科学出版社, 2019.
  [Li Zhongqin. Mass balance and dynamic process simulation of mountain glaciers[M]. Beijing: Science Press, 2019.]
[22] Wang P Y, Li H L, Li Z Q, et al. Cryosphere changes and their impacts on regional water resources in the Chinese Altai Mountains from 2000 to 2021[J]. Catena, 2024, 235: 107644, doi: 10.1016/j.catena.2023.107644.
[23] Jouberton A, Shaw T E, Miles E, et al. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2022, 119(37): e2109796119, doi: 10.1073/pans.2109796119.
[24] Zhang Y L, Gao T G, Kang S C, et al. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas[J]. Earth-Science Reviews, 2021, 220: 103735, doi: 10.1016/j.earscirev.2021.103735.
[25] 毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.
  [Mao Ranjuan, Jiang Xi, Guo Zhongming, et al. Study of the inversion precision of albedo on the Qiyi Glacier in the Qilian Mountain based on TM/ETM+ image[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 301-309.]
[26] Yue X Y, Li Z Q, Wang F T, et al. Spatiotemporal variations in surface albedo during the ablation season and linkages with the annual mass balance on Muz Taw Glacier, Altai Mountains[J]. International Journal of Digital Earth, 2022, 15(1): 2126-2147.
[27] Xu C H, Li Z Q, Mu J X, et al. High-precision measurements of the inter-annual evolution for Urumqi Glacier No.1 in eastern Tien Shan, China[J]. Sciences in Cold and Arid Regions, 2022, 13(6): 474-487.
[28] 刘时银, 张勇, 刘巧, 等. 气候变化影响与风险: 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017.
  [Liu Shiyin, Zhang Yong, Liu Qiao, et al. Climate change impact and risk: Impact and risk of climate change on glacier[M]. Beijing: Science Press, 2017.]
[29] 姚晓军, 刘时银, 郭万钦, 等. 近50 a来中国阿尔泰山冰川变化——基于中国第二次冰川编目成果[J]. 自然资源学报, 2012, 27(10): 1734-1745.
  [Yao Xiaojun, Liu Shiyin, Guo Wanqin, et al. Glacier change of Altay Mountain in China from 1960 to 2009: Based on the second glacier inventory of China[J]. Journal of Natural Resources, 2012, 27(10): 1734-1745.]
[30] 邢武成, 李忠勤, 张慧, 等. 1959年来中国天山冰川资源时空变化[J]. 地理学报, 2017, 72(9): 1594-1605.
  [Xing Wucheng, Li Zhongqin, Zhang Hui, et al. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959[J]. Acta Geographica Sinica, 2017, 72(9): 1594-1605.]
[31] 许艾文. 近40年中国喀喇昆仑山冰川变化的遥感监测[D]. 兰州: 兰州大学, 2017.
  [Xu Aiwen. Monitoring glacier change based on remote sensing in China Karakoram for the last four decades[D]. Lanzhou: Lanzhou University, 2017.]
[32] Zhang Z, Xu J L, Liu S Y, et al. Glacier changes since the early 1960s, eastern Pamir, China[J]. Journal of Mountain Science, 2016, 13(2): 276-291.
[33] Bao W J, Liu S Y, Wei J F, et al. Glacier changes during the past 40 years in the west Kunlun Shan[J]. Journal of Mountain Science, 2015, 12(2): 344-357.
[34] 胡凡盛, 杨太保, 冀琴, 等. 近40 a阿尔金山冰川与气候变化关系研究[J]. 干旱区地理, 2017, 40(3): 581-588.
  [Hu Fansheng, Yang Taibao, Ji Qin, et al. Relationship between the glacier and climate change in the Altun Mountain in recent four decades[J]. Arid Land Geography, 2017, 40(3): 581-588.]
[35] Sun M P, Liu S Y, Yao X J, et al. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28: 206-220.
[36] Duan H Y, Yao X J, Liu S Y, et al. Glacier change in the Tanggula Mountains, Tibetan Plateau, in 1969—2015[J]. Journal of Mountain Science, 2019, 16(11): 2663-2678.
[37] 王利平, 谢自楚, 刘时银, 等. 1970—2000年羌塘高原冰川变化及其预测研究[J]. 冰川冻土, 2011, 33(5): 979-990.
  [Wang Liping, Xie Zichu, Liu Shiyin, et al. Glacierized area variation and its response to climate change in Qangtang Plateau during 1970—2000[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 979-990.]
[38] Liu J, Yao X J, Liu S Y, et al. Glacial changes in the Gangdisê Mountains from 1970 to 2016[J]. Journal of Geographical Sciences, 2020, 30: 131-144.
[39] 冀琴, 刘睿, 杨太保. 1990—2015年喜马拉雅山冰川变化的遥感监测[J]. 地理研究, 2020, 39(10): 2403-2414.
  [Ji Qin, Liu Rui, Yang Taibao. Glacier variations in the Himalayas during 1990—2015[J]. Geographical Research, 2020, 39(10): 2403-2414.]
[40] 邸宝刚. 念青唐古拉山脉36年来冰川变化及其对气候变化的响应[D]. 北京: 中国地质大学(北京), 2019.
  [Di Baogang. Glacier change in the Nianqing Tanggula Mountains in 36 years and its response to climate change[D]. Beijing: University of Geosciences (Beijing), 2019.]
[41] 李霞. 近40年横断山冰川变化的遥感监测研究[D]. 兰州: 兰州大学, 2015.
  [Li Xia. Monitoring glacier change based on remote sensing in the Hengduan Mountains for the last four decades[D]. Lanzhou: Lanzhou University, 2015.]
文章导航

/