区域发展

乌鲁木齐市物流企业区位时空演化、影响因素和发展策略研究

  • 林秋平 ,
  • 李松芮 ,
  • 杨上广 ,
  • 王云云
展开
  • 1.新疆财经大学工商管理学院,新疆 乌鲁木齐 830012
    2.新疆财经大学新疆企业发展研究中心,新疆 乌鲁木齐 830012
    3.华东理工大学商学院,上海 200237
林秋平(1981-),硕士,女,副教授,主要从事物流产业经济研究. E-mail: lqpxjcd@foxmail.com
李松芮(1994-),男,硕士研究生,主要从事物流与供应链管理研究. E-mail: lisongrui2021@163.com

收稿日期: 2023-10-13

  修回日期: 2023-11-07

  网络出版日期: 2024-07-30

基金资助

国家社科基金面上项目(20BGL020);新疆维吾尔自治区普通高等学校人文社会科学基地新疆企业发展研究中心项目(XJEDU2023J007);新疆财经大学研究生科研创新项目(XJUFE2023K048)

Spatiotemporal evolution, influencing factors, and development strategies of logistics enterprise location in Urumqi City

  • LIN Qiuping ,
  • LI Songrui ,
  • YANG Shangguang ,
  • WANG Yunyun
Expand
  • 1. College of Business Administration, Xinjiang University of Finance & Economics, Urumqi 830012, Xinjiang, China
    2. Xinjiang Enterprise Development Research Center, Xinjiang University of Finance & Economics, Urumqi 830012, Xinjiang, China
    3. Business School, East China University of Science and Technology, Shanghai 200237, China

Received date: 2023-10-13

  Revised date: 2023-11-07

  Online published: 2024-07-30

摘要

物流企业的空间布局不仅可以改变现有的物流组织形式,对重塑地区的产业空间格局也会产生重大影响。基于2006—2022年乌鲁木齐市物流企业空间数据,在对乌鲁木齐市物流企业区位时空演变分析的基础上,运用地理探测器和多尺度地理加权回归进一步探究物流企业区位选择的影响因素及其空间异质性,并提出优化物流企业空间布局的发展策略。结果表明:(1) 乌鲁木齐市物流企业存在集聚分布特征,呈现出由“一主轴、一核心”向“三主核、两副核”演变的空间格局。(2) 乌鲁木齐市地区间物流企业发展存在显著的正向溢出效应。(3) 物流企业区位选择的影响因素中,物流企业数解释力度的均值为66%、地区GDP为48%、人口密度为49%、物流园区距离为28%;其中物流企业数和物流园区距离是空间异质性因素且其系数在空间上变化较大,地区GDP是具有正向影响的全局变量,人口密度是具有负向影响的全局变量。研究结果不仅拓展了企业区位理论的研究,而且丰富了研究案例,同时可以为乌鲁木齐市进行物流产业规划和高质量建设丝绸之路经济带商贸物流中心提供理论依据和实践参考。

本文引用格式

林秋平 , 李松芮 , 杨上广 , 王云云 . 乌鲁木齐市物流企业区位时空演化、影响因素和发展策略研究[J]. 干旱区地理, 2024 , 47(7) : 1252 -1262 . DOI: 10.12118/j.issn.1000-6060.2023.574

Abstract

The spatial layout of logistics enterprises can change the existing form of logistics organization and significantly affect the reshaping of the industrial spatial pattern of a region. Based on the spatial data of logistics enterprises in Urumqi City of Xinjiang, China, from 2006 to 2022, and based on the analysis of the spatiotemporal evolution of logistics enterprise locations in Urumqi, this study explores the influencing factors and spatial heterogeneity of logistics enterprise location selection using geographic detectors and multiscale geographically weighted regression and proposes development strategies to optimize the spatial layout of logistics enterprises. Research shows that: (1) Logistics enterprises in Urumqi have agglomeration distribution characteristics, presenting a spatial pattern of evolution from “one main axis, one core” to “three main cores, two secondary cores”. (2) A significant positive spillover effect occurs in developing logistics enterprises between districts in Urumqi City. (3) Among the factors influencing the location selection of logistics enterprises, the average number of logistics enterprises is 66%, the regional GDP is 48%, the population density is 49%, and the distance between logistics parks is 28%. The number of logistics enterprises and the distance between logistics parks are spatial heterogeneity factors, and their coefficients vary significantly. The regional GDP is a global variable with a positive impact, whereas population density is a global variable with a negative impact. The results expand the enterprise location theory and enrich research cases. Simultaneously, it can provide a theoretical basis and practical reference for Urumqi’s logistics industry planning and high-quality Silk Road Economic Belt commercial logistics center construction.

参考文献

[1] 中国新闻网. 《中国商贸物流发展报告(2022年)》发布[EB/OL]. [2023-06-17]. https://www.chinanews.com/m/cj/2023/06-17/10026870.shtml.
  [China News Network. Release of the China Trade and Logistics Development Report (2022)[EB/OL]. [2023-06-17]. https://www.chinanews.com/m/cj/2023/06-17/10026870.shtml.]
[2] Julie C. Concentration and decentralization: The new geography of freight distribution in US metropolitan areas[J]. Journal of Transport Geography, 2010, 18(3): 363-371.
[3] Zhang J. An analysis of spatial distribution characteristics and influential factors of China’s A-Level logistics enterprises[J]. Science, Technology & Public Policy, 2019, 2(2): 273-293.
[4] Sun B W, Li H M, Zhao Q Y. Logistics agglomeration and logistics productivity in the USA[J]. The Annals of Regional Science, 2018, 61(2): 273-293.
[5] 李国旗, 金凤君, 陈娱, 等. 基于物流热度的中国物流业空间格局[J]. 地理科学进展, 2015, 34(5): 629-637.
  [Li Guoqi, Jin Fengjun, Chen Yu, et al. Spatial patterns of logistics industry based on a geographic analysis of hotness degree[J]. Progress in Geography, 2015, 34(5): 629-637.]
[6] Rivera L, Sheffi Y, Welsch R. Logistics agglomeration in the US[J]. Transportation Research Part A, 2014, 59(11): 222-238.
[7] Woudsma C, Jakubicek P. Logistics land use patterns in metropolitan Canada[J]. Journal of Transport Geography, 2019, 88: 102381, doi: 10.1016/j.jtrangeo.2019.01.001
[8] Zhang Y W, Kong J, Zhang Y, et al. Case study of stratification, spatial agglomeration, and unequal logistics industry development on western cities in China[J]. Journal of Urban Planning and Development, 2022, 148(2): 1-13.
[9] 张璐璐, 赵金丽, 宋金平. 京津冀城市群物流企业空间格局演化及影响因素[J]. 经济地理, 2019, 39(3): 125-133.
  [Zhang Lulu, Zhao Jinli, Song Jinping. Spatial evolution and influencing factors of logistics enterprises in Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geography, 2019, 39(3): 125-133.]
[10] 叶磊, 段学军. 基于物流企业的长三角地区城市网络结构[J]. 地理科学进展, 2016, 35(5): 622-631.
  [Ye Lei, Duan Xuejun. City network structure of the Yangtze River Delta region based on logistics enterprise network[J]. Progress in Geography, 2016, 35(5): 622-631.]
[11] Dablanc L, Ross C. Atlanta: A mega logistics center in the Piedmont Atlantic Megaregion (PAM)[J]. Journal of Transport Geography, 2012, 24: 432-442.
[12] 程秀娟, 李晶晶, 杨洁辉, 等. 河南省物流业空间格局——基于百度地图和面板数据[J]. 人文地理, 2018, 33(5): 114-122.
  [Cheng Xiujuan, Li Jingjing, Yang Jiehui, et al. Spatial patterns of Henan logistics industry based on a geographic analysis of Baidu Maps and panel data[J]. Human Geography, 2018, 33(5): 114-122.]
[13] 陈治亚, 周于轶. 基于POI的物流业空间集聚特征分析——以浙江省为例[J]. 铁道科学与工程学报, 2022, 19(10): 2862-2872.
  [Chen Zhiya, Zhou Yuyi. Analysis of spatial agglomeration characteristics of logistics industry based on POI: Taking Zhejiang Province as an example[J]. Journal of Railway Science and Engineering, 2022, 19(10): 2862-2872.]
[14] Woudsma C, Jakubicek P, Dablanc L. Logistics sprawl in North America: Methodological issues and a case study in Toronto[J]. Transportation Research Procedia, 2016, 12: 474-488.
[15] Strale M. Logistics sprawl in the Brussels metropolitan area: Toward a socio-geographic typology[J]. Journal of Transport Geography, 2020, 88: 102372, doi: 10.1016/j.jtrangeo.2018.12.009.
[16] Heitz A, Dablanc L, Olsson J, et al. Spatial patterns of logistics facilities in Gothenburg, Sweden[J]. Journal of Transport Geography, 2018, 88: 102191, doi: 10.1016/j.jtrangeo.2018.03.005.
[17] Li G Q, Jin F J, Chen Y, et al. Location characteristics and differentiation mechanism of logistics nodes and logistics enterprises based on points of interest (POI): A case study of Beijing[J]. Journal of Geographical Sciences, 2017, 27(7): 879-896.
[18] 张大鹏, 曹卫东, 姚兆钊, 等. 上海大都市区物流企业区位分布特征及其演化[J]. 长江流域资源与环境, 2018, 27(7): 1478-1489.
  [Zhang Dapeng, Cao Weidong, Yao Zhaozhao, et al. Study on the distribution characteristics and evolution of logistics enterprises in Shanghai metropolitan area[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7): 1478-1489.]
[19] 千庆兰, 陈颖彪, 李雁, 等. 广州市物流企业空间布局特征及其影响因素[J]. 地理研究, 2011, 30(7): 1254-1261.
  [Qian Qinglan, Chen Yingbiao, Li Yan, et al. Spatial distribution of logistics enterprises in Guangzhou and its influencing factors[J]. Geographical Research, 2011, 30(7): 1254-1261.]
[20] 王瑞, 蒋天颖, 王帅. 宁波市港口物流企业空间格局及区位选择[J]. 地理科学, 2018, 38(5): 691-698.
  [Wang Rui, Jiang Tianying, Wang Shuai. Spatial pattern and location selection of port logistics enterprises in Ningbo[J]. Scientia Geographica Sinica, 2018, 38(5): 691-698.]
[21] 朱慧, 周根贵. 国际陆港物流企业空间格局演化及其影响因素——以义乌市为例[J]. 经济地理, 2017, 37(2): 98-105.
  [Zhu Hui, Zhou Gengui. Spatial agglomeration evolution and influencing factors of logistics enterprises in international inland port: A case study of Yiwu City[J]. Economic Geography, 2017, 37(2): 98-105.]
[22] 潘方杰, 王宏志, 宋明洁, 等. 基于GIS的中国A级物流企业时空演变特征及其影响因素[J]. 长江流域资源与环境, 2020, 29(10): 2186-2199.
  [Pan Fangjie, Wang Hongzhi, Song Mingjie, et al. Study on the spatiotemporal evolutionary characteristics and the influencing factors of A-grade logistics companies in China based on GIS[J]. Resources and Environment in the Yangtze Basin, 2020, 29(10): 2186-2199.]
[23] 张圣忠, 柴廷熠. 西安市物流企业空间格局演化及影响因素分析[J]. 世界地理研究, 2021, 30(6): 1275-1285.
  [Zhang Shengzhong, Chai Tingyi. Spatial evolution and influencing factors of logistics enterprises in Xi’an[J]. World Regional Studies, 2021, 30(6): 1275-1285.]
[24] 曹卫东. 城市物流企业区位分布的空间格局及其演化——以苏州市为例[J]. 地理研究, 2011, 30(11): 1997-2007.
  [Cao Weidong. Spatial pattern and location evolution of urban logistics enterprises: Taking Suzhou as an example[J]. Economic Geography, 2011, 30(11):1997-2007.]
[25] 蒋天颖, 史亚男. 宁波市物流企业空间格局演化及影响因素[J]. 经济地理, 2015, 35(10): 130-138.
  [Jiang Tianying, Shi Ya’nan. The spatial pattern evolution and influencing factors of logistics enterprises in Ningbo[J]. Economic Geography, 2015, 35(10): 130-138.]
[26] 赵学伟, 张志斌, 冯斌, 等. 西北内陆中心城市物流企业空间分异及区位选择——以兰州市为例[J]. 干旱区地理, 2022, 45(5): 1671-1683.
  [Zhao Xuewei, Zhang Zhibin, Feng Bin, et al. Spatial differentiation and location choice of logistics enterprises in the central cities of inland northwest China: A case of Lanzhou City[J]. Arid Land Geography, 2022, 45(5): 1671-1683.]
[27] 沈静, 王少谷, 周楚平. 环境公正视角下广州市污染企业分布与区域人口社会特征的时空关系研究[J]. 地理研究, 2022, 41(1): 46-62.
  [Shen Jing, Wang Shaogu, Zhou Chuping. Spatio-temporal relations between distribution of polluting enterprises and regional sociodemographic characteristics in Guangzhou from the perspective of environmental justice[J]. Economic Geography, 2022, 41(1): 46-62.]
[28] 谢永琴, 魏晓晨. 北京物流企业空间布局演化及影响因素分析[J]. 陕西师范大学学报(自然科学版), 2019, 47(2): 106-115.
  [Xie Yongqin, Wei Xiaochen. The spatial distribution evolution and influence factor of logistics enterprises in Beijing[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(2): 106-115.]
[29] 李天宇, 陆林, 张海洲, 等. 长三角城市群A级物流企业空间演化特征及驱动因素[J]. 经济地理, 2021, 41(11): 157-166.
  [Li Tianyu, Lu Lin, Zhang Haizhou, et al. Evolution characteristics and driving factors of A-level logistics enterprises in the Yangtze River Delta urban agglomeration[J]. Economic Geography, 2021, 41(11): 157-166.]
[30] Fotheringham S A, Yang W, Kang W. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265.
[31] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
  [Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
[32] 王成金, 张梦天. 中国物流企业的布局特征与形成机制[J]. 地理科学进展, 2014, 33(1): 134-144.
  [Wang Chengjin, Zhang Mengtian. Spatial pattern and its mechanism of modern logistics companies in China[J]. Progress in Geography, 2014, 33(1): 134-144.]
[33] 周侃, 殷悦, 陈妤凡. 城市群水污染物排放的驱动因素及尺度效应[J]. 地理学报, 2022, 77(9): 2219-2235.
  [Zhou Kan, Yin Yue, Chen Yufan. Driving factors and scale effects of water pollutant discharge in the urban agglomeration[J]. Acta Geographica Sinica, 2022, 77(9): 2219-2235.]
文章导航

/