第三次新疆综合科学考察

昆仑山北坡地表水氢氧稳定同位素空间分布特征

  • 石玉东 ,
  • 王圣杰 ,
  • 张明军 ,
  • 朱成刚 ,
  • 车彦军
展开
  • 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
    3.宜春学院地理科学系,江西 宜春 336000
石玉东(1995-),男,博士研究生,主要从事全球变化与水循环过程研究. E-mail: syd_1995@126.com
王圣杰(1987-),男,副教授,主要从事同位素水文气候研究. E-mail: geowang@126.com

收稿日期: 2024-02-23

  修回日期: 2024-05-07

  网络出版日期: 2024-07-30

基金资助

国家科技基础资源调查专项(2021xjkk0101);国家自然科学基金项目(42261008)

Spatial distribution characteristics of stable hydrogen and oxygen isotopes in surface waters on the northern slope of the Kunlun Mountains

  • SHI Yudong ,
  • WANG Shengjie ,
  • ZHANG Mingjun ,
  • ZHU Chenggang ,
  • CHE Yanjun
Expand
  • 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Department of Geographical Science, Yichun University, Yichun 336000, Jiangxi, China

Received date: 2024-02-23

  Revised date: 2024-05-07

  Online published: 2024-07-30

摘要

氢氧稳定同位素作为示踪剂被广泛用于水文循环过程研究。地表水是水循环的重要组成部分,是区域水汽来源和现代水文过程分析的有效载体。基于新疆第三次科学考察,于2018年8月至2023年8月在昆仑山北坡采集了地表水样本并测量其氢氧稳定同位素数据,同时汇编了区域以往的地表水同位素数据,分析了昆仑山北坡地表水氢氧稳定同位素的空间分布特征。结果表明:(1) 昆仑山北坡地表水同位素值呈现出西低东高的空间变化特征,区域地表水线为δ2H=5.98×δ18O-6.86(R2=0.65,n=141)。(2) 对比昆仑山北坡地表水和降水氢氧稳定同位素值发现地表水同位素平均值普遍低于加权降水同位素值。(3) 昆仑山北坡地表水同位素空间格局受到西风携带的外来水汽和局地再循环水汽共同影响,此外蒸发也会改变区域地表水同位素值。

本文引用格式

石玉东 , 王圣杰 , 张明军 , 朱成刚 , 车彦军 . 昆仑山北坡地表水氢氧稳定同位素空间分布特征[J]. 干旱区地理, 2024 , 47(7) : 1127 -1135 . DOI: 10.12118/j.issn.1000-6060.2024.105

Abstract

Stable hydrogen and oxygen isotopes are widely used as tracers in studying hydrologic processes. Surface water is an important component of the water cycle, and it is an effective vehicle for analyzing regional moisture sources and modern hydrologic processes. We collected surface water samples from August 2018 to August 2023 on the northern slope of the Kunlun Mountains during the Third Xinjiang Scientific Expedition and measured the stable hydrogen and oxygen isotope values. Additionally, we compiled the previous surface water isotope data in the region. We analyzed the spatial distribution characteristics of the stable hydrogen and oxygen isotopes of surface water on the northern slope of the Kunlun Mountains. The results showed that: (1) The surface water isotope values on the northern slope of the Kunlun Mountains showed spatial variations characterized by low values in the west and high values in the east. The local surface water line is δ2H=5.98×δ18O-6.86 (R2=0.65, n=141). (2) A comparison of the stable isotope values of surface water and precipitation on the northern slope of the Kunlun Mountains reveals that the regional surface water isotope value averages are generally lower than the weighted precipitation isotope values. (3) The spatial distribution of surface water isotopes on the northern slope of the Kunlun Mountains is influenced by the interplay of two key factors: the water vapor advection by westerly winds and the local recycled moisture; additionally, evaporation also changed the regional surface water isotope values.

参考文献

[1] Bowen G J, Cai Z Y, Fiorella R P, et al. Isotopes in the water cycle: Regional- to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 453-479.
[2] Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
[3] Zhang M J, Wang S J. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid Central Asia[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 27-37.
[4] Craig H, Gordon L. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[C]// Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa: CNR-Laboratorio di Geologia Nucleare, 1965: 9-130.
[5] Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
[6] Dee S G, Bailey A, Conroy J L, et al. Water isotopes, climate variability, and the hydrological cycle: Recent advances and new frontiers[J]. Environmental Research: Climate, 2023, 2: 022002, doi: 10.1088/2752-5295/accbe1.
[7] Xia Z Y, Welker J M, Winnick M J. The seasonality of deuterium excess in non-polar precipitation[J]. Global Biogeochemical Cycles, 2022, 36(10): e2021GB007245, doi: 10.1029/2021GB007245.
[8] Wang D, Tian L D, Risi C, et al. Vehicle-based in situ observations of the water vapor isotopic composition across China: Spatial and seasonal distributions and controls[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3409-3433.
[9] Harrington T S, Nusbaumer J, Skinner C B. The contribution of local and remote transpiration, ground evaporation, and canopy evaporation to precipitation across North America[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(7): e2022JD037290, doi: 10.1029/2022JD037290.
[10] Bershaw J, Lechler A R. The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia[J]. Chemical Geology, 2019, 516: 68-78.
[11] Hren M, Bookhagen B, Blisniuk P, et al. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288(1-2): 20-32.
[12] 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
  [Yao Junqiang, Li Moyan, Tuoliewubieke Dilinuer, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961—2019[J]. Arid Zone Research, 2022, 39(2): 333-346.]
[13] Ma Q R, Zhang J, Ma Y J, et al. How do multiscale interactions affect extreme precipitation in eastern Central Asia?[J]. Journal of Climate, 2021, 34(18): 7475-7491.
[14] 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
  [Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Science, 2017, 72(1): 18-26.]
[15] 姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化研究进展[J]. 干旱区研究, 2018, 35(2): 269-276.
  [Yao Junqiang, Yang Qing, Mao Weiyi, et al. Progress of study on variation of atmospheric water cycle factors over arid region in northwest China[J]. Arid Zone Research, 2018, 35(2): 269-276.]
[16] Kong Y L, Pang Z H. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation[J]. Journal of Hydrology, 2016, 542: 222-230.
[17] Wang S J, Zhang M J, Che Y J, et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
[18] Wang S J, Wang L W, Zhang M J, et al. Quantifying moisture recycling of a leeward oasis in arid Central Asia using a Bayesian isotopic mixing model[J]. Journal of Hydrology, 2022, 613: 128459, doi: 10.1016/j.jhydrol.2022.128459.
[19] Shi Y D, Wang S J, Wang L W, et al. Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia[J]. Atmospheric Research, 2021, 259: 105698, doi: 10.1016/j.atmosres.2021.105698.
[20] Wang S J, Zhang M J, Crawford J, et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(5): 2667-2682.
[21] Yu W S, Tian L D, Risi C, et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters, 2016, 456: 146-156.
[22] Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393.
[23] Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D02110, doi: 10.1029/2011JD016132.
[24] Fan X M, Gao J, Zhao A B, et al. Spatial variability of stable isotopes in river water over the Tibetan Plateau[J]. Hydrological Processes, 2023, 37(10): e15012, doi: 10.1002/hyp.15012.
[25] Ren W, Yao T D, Xie S Y, et al. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2017, 545: 276-287.
[26] Liu Q, Tian L D, Wang J L, et al. A study of longitudinal and altitudinal variations in surface water stable isotopes in west Pamir, Tajikistan[J]. Atmospheric Research, 2015, 153: 10-18.
[27] Wu H W, Wu J L, Li J, et al. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs[J]. Catena, 2020, 193: 104639, doi: 10.1016/j.catena.2020.104639.
[28] 陈曦. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010: 25-36.
  [Chen Xi. Physical geography of arid land in China[M]. Beijing: Science Press, 2010: 25-36.]
[29] 王世江. 中国新疆河湖全书[M]. 北京: 中国水利水电出版社, 2010.
  [Wang Shijiang. The rivers and lakes in Xinjiang, China[M]. Beijing: China Water & Power Press, 2010.]
[30] Yao J Q, Chen Y N, Guan X F, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957, doi: 10.1016/j.earscirev.2022.103957.
[31] 丁林, 许强, 张利云, 等. 青藏高原河流氧同位素区域变化特征与高度预测模型建立[J]. 第四纪研究, 2009, 29(1): 1-12.
  [Ding Lin, Xu Qiang, Zhang Liyun, et al. Regional variation of river water oxygen isotope and empirical elevation precipitation models in Tibetan Plateau[J]. Quaternary Sciences, 2009, 29(1): 1-12.]
[32] 刘琴. 青藏高原及其周边地区地表水氢氧稳定同位素空间变化特征[D]. 重庆: 西南大学, 2014.
  [Liu Qin. Variations of river water stable isotopes on the Tibetan Plateau and adjacent regions[D]. Chongqing: Southwest University, 2014.]
[33] 王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35.
  [Wang Wenxiang, Wang Ruijiu, Li Wenpeng, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology and Engineering Geology, 2013, 40(4): 29-35.]
[34] 王立伟. 塔里木盆地降水氢氧稳定同位素景观图谱及其影响过程[D]. 兰州: 西北师范大学, 2022.
  [Wang Liwei. Stable hydrogen and oxygen isoscapes in precipitation and influencing processes across the Tarim Basin[D]. Lanzhou: Northwest Normal University, 2022.]
[35] Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modeling and Software, 2009, 24(8): 938-939.
[36] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[37] Li L, Garzione C N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction[J]. Earth and Planetary Science Letters, 2017, 460: 302-314.
[38] Wu H W, Wu J L, Song F, et al. Spatial distribution and controlling factors of surface water stable isotope values (δ18O and δ2H) across Kazakhstan, Central Asia[J]. Science of the Total Environment, 2019, 678: 53-61.
[39] Kuang X X, Luo X, Jiao J J, et al. Using stable isotopes of surface water and groundwater to quantify moisture sources across the Yellow River source region[J]. Hydrological Processes, 2019, 33(13): 1835-1850.
[40] Xing M, Liu W G, Hu J, et al. A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: A case study for Xi’an, China[J]. Atmospheric Chemistry and Physics, 2023, 23(16): 9123-9136.
[41] Sun C J, Li X G, Chen Y N, et al. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin[J]. Isotopes in Environmental and Health Studies, 2016, 52(3): 281-297.
[42] Wang S J, Zhang M J, Hughes C E, et al. Meteoric water lines in arid Central Asia using event-based and monthly data[J]. Journal of Hydrology, 2018, 562: 435-445.
[43] Sun C J, Chen Y N, Li J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78.
[44] Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
[45] Wang S J, Jiao R, Zhang M J, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075, doi: 10.1029/2020JD033075.
[46] Yao J Q, Chen Y N, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823, doi: 10.1016/j.jhydrol.2020.124823.
[47] Zhu X F, Wu T H, Hu G J, et al. Long-distance atmospheric moisture dominates water budget in permafrost regions of the central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(22): 4280-4294.
文章导航

/