第三次新疆综合科学考察

昆仑山北坡水资源科学考察初报

  • 朱成刚 ,
  • 陈亚宁 ,
  • 张明军 ,
  • 车彦军 ,
  • 孙美平 ,
  • 赵锐锋 ,
  • 汪洋 ,
  • 刘玉婷
展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.西北师范大学,甘肃 兰州 730070
    3.宜春学院,江西 宜春 336000
    4.新疆农业大学,新疆 乌鲁木齐 830052
    5.喀什大学,新疆 喀什 844006
朱成刚(1976-),男,博士,副研究员,主要从事干旱区地表过程及生态水文研究. E-mail: zhuchg@ms.xjb.ac.cn
陈亚宁(1958-),男,博士,研究员,主要从事水资源与生态环境研究. E-mail: chenyn@ms.xjb.ac.cn

收稿日期: 2024-02-25

  修回日期: 2024-04-15

  网络出版日期: 2024-07-30

基金资助

国家基础资源调查项目(2021xjkk0100)

Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains

  • ZHU Chenggang ,
  • CHEN Yaning ,
  • ZHANG Mingjun ,
  • CHE Yanjun ,
  • SUN Meiping ,
  • ZHAO Ruifeng ,
  • WANG Yang ,
  • LIU Yuting
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Northwest Normal University, Lanzhou 730070, Gansu, China
    3. Yichun University, Yichun 336000, Jiangxi, China
    4. Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    5. Kashi University, Kashi 844006, Xinjiang, China

Received date: 2024-02-25

  Revised date: 2024-04-15

  Online published: 2024-07-30

摘要

2021年10月首批启动了第三次新疆科学考察——“昆仑山北坡水资源开发潜力及利用途径科学考察”。结合多源遥感信息和2022—2023年野外科考工作,对昆仑山北坡的水文水资源变化和水资源利用进行了调查研究。结果表明:(1) 1990—2020年,昆仑山北坡山区的气温、降水分别以0.14 ℃·(10a)-1和6.53 mm·(10a)-1幅度增加。(2) 冰川变化相对稳定,积雪面积和积雪深度表现为略微增加。(3) 永久性水体和季节性水体面积分别显著增加79.89%和144.49%。(4) 东昆仑-库木库里盆地的阿牙克库木湖和阿其克库勒湖两大湖泊的水域面积分别增加了68.91%和58.22%,盆地内多条河流具备水资源开发潜力。(5) 昆仑山北坡陆地水储量总体呈增加趋势,表现为从西向东增加趋势越加显著。(6) 昆仑山北坡的主要河流和田河、克里雅河和车尔臣河年均径流量2010—2023年较1957—2023年分别增加了20.24%、27.85%和45.17%。(7) 基于不同气候变化情景模拟预测至21世纪中后叶,主要河流径流量将保持上升态势,区域水资源量总体呈增加趋势。昆仑山北坡的水资源禀赋可为区域绿色高质量发展提供有利的水资源保障条件。

本文引用格式

朱成刚 , 陈亚宁 , 张明军 , 车彦军 , 孙美平 , 赵锐锋 , 汪洋 , 刘玉婷 . 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024 , 47(7) : 1097 -1105 . DOI: 10.12118/j.issn.1000-6060.2024.117

Abstract

The project titled “Scientific Investigation of Water Resources Development Potential and Utilization Pathways on the northern Slope of the Kunlun Mountains” was initiated in October 2021 as part of the initial set of projects for the Third Xinjiang Scientific Expedition. This study integrates multi-source remote sensing data and field research conducted from 2022 to 2023 to examine hydrological changes, water resources dynamics, and water resource utilization patterns on the northern slope of the Kunlun Mountains. The findings reveal the following: (1) A temperature increase of 0.14 ℃·(10a)−1 and precipitation increase of 6.53 mm·(10a)−1 from 1990 to 2020 was observed on the northern slope of the Kunlun Mountains. (2) Glacier variations have remained relatively stable, with a slight expansion observed in snow cover area and depth. (3) Permanent water bodies have experienced a significant growth rate of 79.89%, while seasonal water bodies have expanded by an impressive margin of 144.49%. (4) Ayakkum Lake and Akikkule Lake, two major lakes within the Kumukuli Basin, witnessed increases in their water areas by approximately 68.91% and 58.22%, respectively, and several rivers within this basin exhibit potential for further development regarding water resources utilization. (5) Terrestrial water storage on the northern slope of the Kunlun Mountains generally exhibits an increasing trend, particularly more pronounced from west to east. (6) Average annual runoff of Hotan River, Keriya River, and Qarqan River, the main rivers on the northern slope of the Kunlun Mountains, increased by 20.24%, 27.85%, and 45.17%, respectively, during the period of 2010—2023 when compared with the period of 1957—2023. (7) Based on simulations considering different climate change scenarios, it is predicted that major river runoff will continue to increase throughout the middle-to-later stages of the 21st century, alongside regional augmentation in available water resources. The conditions of water resources on the northern slope of the Kunlun Mountains can provide favorable water resources for the green development of the region.

参考文献

[1] 陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393.
  [Chen Yaning, Li Zhongqin, Xu Jianhua, et al. Changes and protection suggestions in water resources and ecological environment in arid region of northwest China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 385-393.]
[2] 李秀成, 杨太保, 田洪阵. 1990—2011年西昆仑峰区冰川变化的遥感监测[J]. 地理科学进展, 2013, 32(4): 548-559.
  [Li Xioucheng, Yang Taibao, Tian Hongzhen. Variation of west Kunlun Mountains glacier during 1990—2011[J]. Progress in Geography, 2013, 32(4): 548-559.]
[3] 赵华秋, 王欣, 赵轩茹, 等. 2008—2018年中国冰川变化分析[J]. 冰川冻土, 2021, 43(4): 976-986.
  [Zhao Huaqiu, Wang Xin, Zhao Xuanru, et al. Analysis of glacier changes in China from 2008 to 2018[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 976-986.]
[4] 陈亚宁. 东昆仑-库木库里盆地西南边缘岩溶地貌[J]. 干旱区地理, 1985, 8(3): 44-47.
  [Chen Yaning. The karst landforms in the Kumkul Basin’s edge of the east Kunlun Mountains[J]. Arid Land Geography, 1985, 8(3): 44-47.]
[5] Zhou J, Wang L, Zhang Y S, et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003—2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 2015, 51: 8060-8086.
[6] Zhou J, Wang L, Zhang Y Y, et al. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau[J]. Science Bulletin, 2022, 67: 474-478.
[7] 张俊兰, 杨霞, 肖俊安, 等. 昆仑山北部夏季降水多尺度时空变化特征[J]. 高原山地气象研究, 2023, 43(3): 1-10.
  [Zhang Junlan, Yang Xia, Xiao Jun’an, et al. Multi-scale temporal and spatial variation characteristics of summer precipitation in northern Kunlun Mountains[J]. Plateau and Mountain Meteorology Research, 2023, 43(3): 1-10.]
[8] Ombadi M, Risser M D, Rhoades A M, et al. A warming-induced reduction in snow fraction amplifies rainfall extremes[J]. Nature, 2023, 619: 305-310.
[9] Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6: 508-513.
[10] Shen Z X, Zhang Q, Singh V P, et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia[J]. Nature Communications, 2022, 13: 1849, doi: 10.1038/s41467-022-29544-6
[11] Li X Y, Long D, Scanlon B R, et al. Climate change threatens terrestrial water storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12: 801-807.
[12] 王宗侠, 刘苏峡. 1990—2020年天山北坡地下水储量估算及其时空演变规律[J]. 地理学报, 2023, 78(7): 1744-1763.
  [Wang Zongxia, Liu Suxia. Estimation and spatiotemporal evolution of groundwater storage on the northern slope of the Tianshan Mountains over the past three decades[J]. Acta Geographica Sinica, 2023, 78(7): 1744-1763.]
[13] 张齐飞, 陈亚宁, 孙从建, 等. 塔里木河流域水储量变化及绿洲生态安全评估[J]. 干旱区地理, 2024, 47(1): 1-13.
  [Zhang Qifei, Chen Yaning, Sun Congjian, et al. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin[J]. Arid Land Geography, 2024, 47(1): 1-13.]
[14] 姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72.
  [Yao Junqiang, Mao Weiyi, Chen Jing, et al. Signal and impact of wet-to-dry shift over Xinjiang, China[J]. Acta Geographica Sinica, 2021, 76(1): 57-72.]
[15] 董翰林, 王文婷, 谢云, 等. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884.
  [Dong Hanlin, Wang Wenting, Xie Yun, et al. Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023, 40(12): 1875-1884.]
[16] 田昊玮, 陈伏龙, 龙爱华, 等. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442.
  [Tian Haowei, Chen Fulong, Long Aihua, et al. Response and prediction of runoff to climate change in the headwaters of the Bortala River[J]. Arid Land Geography, 2023, 46(9): 1432-1442.]
文章导航

/