和田河中下游流域地下水水化学特征及其演化规律
收稿日期: 2023-09-05
修回日期: 2023-11-14
网络出版日期: 2024-05-30
基金资助
第三次新疆综合科学考察业务项目(2022xjkk0300);陕西省创新能力支撑计划-旱区地下水文过程与表生生态重点科技创新团队科研项目(2019TD-040)
Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin
Received date: 2023-09-05
Revised date: 2023-11-14
Online published: 2024-05-30
为研究和田河中下游流域地下水水化学特征及其演化规律,采用Piper三线图、Gibbs图、PHREEQC软件和数理统计等方法对该地区水化学特征、主要溶质组分来源和演化规律开展了综合研究分析。结果表明:(1) 地下水中八大常规离子含量整体偏高,尤其是Cl-、SO42-、Na+、Ca2+和HCO3-占比较大。(2) 水化学溶解组分空间差异性明显,除少部分地区水化学类型表现为SO4·Cl-Ca·Mg型外,大部分均以SO4·Cl-Na型为主。地下水呈弱碱性,大部分地区水样点水质基本满足生活饮用水标准。部分绿洲平原区受人类生产活动影响,水中NO3-含量明显异常。(3) 在水-岩作用和阳离子交换作用下,地下水中Na+、Ca2+、Mg2+、Cl-、SO42-等离子组分主要物质来源于岩盐、方解石、白云石和石膏等矿物的溶解。在向下游细土平原和沙漠区径流过程中,受蒸发浓缩作用普遍控制影响,水中各离子浓度含量不断增大。(4) 在开放性较好的系统环境中,CO2促进了各矿物的溶解,使得地下水中各离子含量不断溶解聚集,浓度增大。进入下游冲积平原区后,受细粒砂土介质层阻隔影响,地下水径流与交替强度减弱导致溶滤作用变差,蒸发浓缩作用逐渐占主导地位,进一步加大了水中离子含量和水化学类型的差异性。研究结果可为和田河流域水资源合理开发利用和生态环境保护提供理论依据。
李小等 , 常亮 , 段瑞 , 王倩 , 杨泽东 , 张群慧 , 张鹏伟 . 和田河中下游流域地下水水化学特征及其演化规律[J]. 干旱区地理, 2024 , 47(5) : 753 -761 . DOI: 10.12118/j.issn.1000-6060.2023.481
To investigate the chemical characteristics of groundwater and its evolutionary patterns in the middle and lower reaches of the Hotan River Basin, Xinjiang, China, this study analyzed 21 groundwater samples from the area. It included an examination of the constituents and origins of groundwater solutes and the reverse simulation of hydrogeochemical processes. The analysis employed Piper trilinear diagrams, Gibbs diagrams, PHREEQC software, and mathematical statistics to explore the chemical properties of groundwater, the principal sources of solutes, and their evolution in the study region. The results revealed that: (1) High concentrations of eight conventional ions in the groundwater, with Cl-, SO42-, Na+, Ca2+, and HCO3- being particularly abundant. (2) There was a significant spatial variability in the dissolved constituents of the groundwater. The predominant chemical types were SO4·Cl-Ca·Mg and SO4·Cl-Na, with the latter being more common across most areas. The groundwater’s alkalinity was generally low, and the water quality in most regions met daily drinking water standards. However, in some oasis plains, elevated NO3- levels were attributed to human activities. (3) The dissolution of minerals such as halite, calcite, dolomite, and gypsum, facilitated by water-rock interactions and cation exchange, was identified as the main source of Na+, Ca2+, Mg2+, Cl-, and SO42- ions in the groundwater. During transit to finer soil plains and desert areas, ion concentrations increased due to evaporation and concentration processes. (4) In open system conditions, CO2 enhanced the dissolution of various minerals, leading to increased ion concentrations. As groundwater flowed into the alluvial plains downstream, the fine sand layer acted as a barrier, reducing the intensity of groundwater flow and solute leaching, with evaporation and concentration processes becoming more dominant. This study provides a theoretical foundation for the sustainable development and management of water resources and environmental protection in the Hotan River Basin.
[1] | 郭钰颖, 吕智超, 王广才, 等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6): 101-105. |
[Guo Yuying, Lü Zhichao, Wang Guangcai, et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105. ] | |
[2] | 邵杰, 李瑛, 侯光才, 等. 新疆伊犁河谷地下水化学特征及其形成作用[J]. 干旱区资源与环境, 2017, 31(4): 99-105. |
[Shao Jie, Li Ying, Hou Guangcai, et al. Chemical characteristics of groundwater in Yili River valley of Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(4): 99-105. ] | |
[3] | 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545. |
[Zhang Tao, Cai Wutian, Li Yingzhi, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537-4545. ] | |
[4] | Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, north western China[J]. Journal of Arid Land, 2014, 6(4): 378-388. ] |
[5] | 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. |
[Hong Tao, Xie Yunqiu, Yu Qiwen, et al. Hydrochemical characteristic study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18. ] | |
[6] | 曾妍妍, 周金龙, 贾瑞亮, 等. 新疆祁漫塔格地区地表水水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(6): 64-70. |
[Zeng Yanyan, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristic and causes of surface water in Qimantage area, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 64-70. ] | |
[7] | 任孝宗, 刘敏, 张迎珍, 等. 基于Matlab的Durov三线图的实现[J]. 干旱区地理, 2018, 41(4): 744-750. |
[Ren Xiaozong, Liu Min, Zhang Yingzhen, et al. Plotting Durov diagram based on Matlab[J]. Arid Land Geography, 2018, 41(4): 744-750. ] | |
[8] | 张勇军, 杨余辉, 胡义成, 等. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594. |
[Zhang Yongjun, Yang Yuhui, Hu Yicheng, et al. Temporal and spatial variation characteristics of hydrochemistry and irrigation adaptability evaluation in Kashi River Basin, Xinjiang[J]. Arid Land Geography, 2023, 46(4): 583-594. ] | |
[9] | 杨锐, 周金龙, 张杰, 等. 新疆和田地区平原区地下水硬度空间分布及影响因素分析[J]. 环境化学, 2020, 3(11): 3255-3263. |
[Yang Rui, Zhou Jinlong, Zhang Jie, et al. Analysis on spatial distribution and influencing factors of groundwater hardness in the plain area of Hetian Prefecture, Xinjiang[J]. Environmental Chemistry, 2020, 39(11): 3255-3263. ] | |
[10] | 李玲, 邵龙美, 周金龙, 等. 新疆和田河流域绿洲区地下水质量演化特征[J]. 水资源与水工程学报, 2021, 32(1): 63-71. |
[Li Ling, Shao Longmei, Zhou Jinlong, et al. Evolution characteristics of groundwater quality in Hotan River Basin oasis, Xinjiang[J]. Journal of Water Resources & Water Engineering, 2021, 32(1): 63-71. ] | |
[11] | Soumya B S, Sekhar M, Riotte J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, south India[J]. Geoderma, 2011, 165(1): 12-24. |
[12] | 何军, 肖攀, 许珂, 等. 江汉平原西缘地下水水文地球化学过程研究[J]. 人民长江, 2018, 49(5): 6-10. |
[He Jun, Xiao Pan, Xu Ke, et al. Hydro-geochemical process of groundwater in western margin of Jianghan Plain[J]. Yangtze River, 2018, 49(5): 6-10. ] | |
[13] | 陈陆望, 许冬清, 刘延娴, 等. 宿县矿区主要突水含水层水文地球化学模拟[J]. 安徽理工大学学报(自然科学版), 2017, 37(6): 27-33. |
[Chen Luwang, Xu Dongqing, Liu Yanxian, et al. Study on hydrogeochemical simulation of main inrush aquifers in the Suxian mining area[J]. Journal of Anhui University of Science and Technology (Natural Science Edition), 2017, 37(6): 27-33. ] | |
[14] | 李海花, 闵月, 李桉孛, 等. 昆仑山北麓两次极端暴雨水汽特征对比分析[J]. 干旱区地理, 2022, 45(3): 715-724. |
[Li Haihua, Min Yue, Li Anbei, et al. Comparative analysis of on water vapor characteristics of two extreme rainstorms in the north slope of Kunlun Mountains[J]. Arid Land Geography, 2022, 45(3): 715-724. ] | |
[15] | 顾玮, 古丽·加帕尔, 尹瀚民, 等. 新疆南疆地区太阳能资源时空分布特征及区划研究[J]. 干旱区地理, 2021, 44(6): 1665-1675. |
[Gu Wei, Jiapaer Guli, Yin Hanmin, et al. Spatial and temporal distribution characteristic and division research of solar energy resources in southern Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1665-1675. ] | |
[16] | Zhao X Y. Impacts of human activity on environment in the high-cold pasturing area: A case of Gannan pasturing area[J]. Acta Ecologica Sinica, 2010, 30(3): 141-149. |
[17] | 纪媛媛, 贾瑞亮, 周金龙, 等. 新疆伊犁河谷地地下水质量与污染评价[J]. 节水灌溉, 2014(3): 32-37. |
[Ji Yuanyuan, Jia Ruiliang, Zhou Jinlong, et al. Assessment of groundwater quality and pollution in Ili River Valley of Xinjiang[J]. Journal of Water Saving and Irrigation, 2014(3): 32-37. ] | |
[18] | 刘久潭, 高宗军, 马媛媛, 等. 堆龙河河谷平原下游地下水水质变化特征[J]. 水电能源科学, 2018, 36(8): 39-42. |
[Liu Jiutan, Gao Zongjun, Ma Yuanyuan, et al. Characteristics of groundwater quality change in the lower reaches of Duilong River Valley Plain[J]. Water Resources and Power, 2018, 36(8): 39-42. ] | |
[19] | Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. |
[20] | 栾凤娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389. |
[Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389. ] | |
[21] | 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征与演化规律[J]. 环境科学, 2019, 42(9): 4041-4052. |
[Wei Xing, Zhou Jinlong, Nai Weihua, et al. Hydrochemical characteristic and evolution of groundwater in the Kashgar Delta Area in Xinjiang[J]. Environmental Science, 2019, 42(9): 4041-4052. ] | |
[22] | 韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406. |
[Han Guilin, Liu Congqiang. Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science, 2005, 20(4): 394-406. ] | |
[23] | Li S Y, Xu Z F, Wang H, et al. Geochemistry of the upper Han River Basin, China[J]. Chemical Geology, 2009, 264(1-4): 89-95. |
[24] | 李会亚, 冯起, 陈丽娟, 等. 民勤绿洲灌区地下水水化学特征及其演化驱动机理[J]. 干旱区研究, 2017, 34(4): 733-740. |
[Li Huiya, Feng Qi, Chen Lijuan, et al. Hydrochemical characteristic and evolution mechanism of groundwater in the Minqin Oasis[J]. Arid Zone Research, 2017, 34(4): 733-740. ] | |
[25] | Singh N, Singh R, Kamal V, et al. Assessment of hydrogeochemistry and the quality of groundwater in 24-Parganas districts, west Bengal[J]. Environmental Earth Sciences, 2015, 73(1): 375-386. |
[26] | 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水反向水文地球化学模拟[J]. 干旱区资源与环境, 2017, 31(10): 65-70. |
[Zhao Jiangtao, Zhou Jinlong, Liang Chuan, et al. Reverse hydrogeochemical simulation of groundwater in the plain area of Yanqi Basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 65-70. ] | |
[27] | 杨奇越, 段磊, 康华, 等. 榆神地区反向水文地球化学模拟[J]. 中国科技信息, 2018(增刊1): 103-105. |
[Yang Qiyue, Duan Lei, Kang Hua, et al. Reverse hydrogeochemical simulation of Yushen area[J]. China Science and Technology Information, 2018(Suppl. 1): 103-105. ] | |
[28] | 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 14-15. |
[Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Basic course for hydrographic geochemistry[M]. Beijing: Geology Press, 1993: 14-15. ] |
/
〈 | 〉 |